Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 240-251    DOI: 10.3785/j.issn.1006-754X.2025.04.102
优化设计     
基于动网格技术的水动力旋转喷雾降尘装置性能分析
关维娟1(),陈清华2,3,4,王德俊2,3,4(),江丙友4,许曾生2,3,4
1.安徽理工大学 数学与大数据学院,安徽 淮南 232001
2.安徽理工大学 环境友好材料与职业健康研究院(芜湖),安徽 芜湖 241003
3.安徽理工大学 矿山智能装备与技术安徽省重点实验室,安徽 淮南 232001
4.安徽理工大学 工业粉尘防控与职业安全健康教育部重点实验室,安徽 淮南 232001
performance analysis of hydrodynamic rotary spray dust reduction device based on moving grid technology
Weijuan GUAN1(),Qinghua CHEN2,3,4,Dejun WANG2,3,4(),Bingyou JIANG4,Zengsheng XU2,3,4
1.School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China
2.Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
3.Anhui Provincial Key Laboratory of Mining Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China
4.Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
 全文: PDF(4102 KB)   HTML
摘要:

水动力旋转喷雾降尘装置具有仅需水动力驱动、雾化效果好等优点,在煤矿井下工作面得到广泛应用。为了实现安全、精准、高效降尘,基于动网格技术对其性能进行了系统分析。采用DesignModeler软件建立了降尘装置三维模型,采用动网格技术分析了水轴出口角度对水流出口速度和水轴转速的影响规律,并基于UDF(user-defined function,用户自定义函数)编程技术和VOF(volume of fluid method,流体体积法)模型,分析了降尘装置混合出口处的雾粒轴向速度和风流进口处的风流轴向速度随水轴出口角度的变化规律。结果表明:随着水轴出口角度的增大,水流最大出口速度从63.19 m/s减小到24.97 m/s,水轴转速逐步增大到1 786.4 r/min;雾粒最大轴向速度从39.178 m/s减小到10.637 m/s,后增大到12.854 m/s,最后减小到8.014 m/s,速度均匀性先增强后减弱;风流最大轴向速度从0.804 m/s增大到1.524 m/s,后减小到1.272 m/s,速度均匀性先基本不变后减弱;当水轴出口角度为45°时,降尘装置的雾化性能最佳。搭建了水轴转速和风流轴向速度测试平台,通过实验验证了仿真结果的正确性。将降尘装置进行了现场应用,结果表明,采用水动力旋转喷雾降尘装置后,转载机进料口区域总粉尘和呼吸性粉尘的降尘率有了明显提高,均达到了75%以上,其中工人作业处的呼吸性粉尘质量浓度降到6.31 mg/m3。研究结果为创建安全、健康、绿色的煤矿生产环境提供了新思路。

关键词: 旋转喷雾动网格数值模拟负压除尘降尘效率    
Abstract:

hydrodynamic rotary spray dust reduction device has the advantages of only hydrodynamic drive and good atomization effect, and has been widely used in coal mine underground working face. In order to realize safe, accurate and efficient dust reduction, its performance was analyzed systematically based on dynamic grid technology. The 3D model of the dust reduction device was established by DesignModeler software, and the influence rules of the water axis outlet angle on the outlet speed of water flow and the rotational speed of water axis were analyzed by using the dynamic grid technology. The programming technique of UDF (user-defined function) and the VOF (volume of fluid method) model were used to analyze the variation rules of the axial velocity of fog particles at the mixing outlet and the axial velocity of wind flow in the wind flow inlet with the water axis outlet angle. The results showed that with the increase of water axis outlet angle, the maximum outlet velocity of water flow decreased from 63.19 m/s to 24.97 m/s, and the rotation speed of water axis gradually increased to 1 786.4 r/min; the maximum axial velocity of fog particles at mixing outlet decreased from 39.178 m/s to 10.637 m/s, then to 12.854 m/s, and finally to 8.014 m/s, the velocity uniformity increased firstly and then decreased; the maximum axial velocity of wind flow firstly increased from 0.804 m/s to 1.524 m/s and then decreased to 1.272 m/s, and the velocity uniformity was unchanged firstly and then decreased. When the water axis outlet angle was 45°, the atomization performance of the dust reduction device was the best. The test platform of water axis rotation speed and wind flow axial speed was set up, the correctness of simulation results was verified by experiments. The dust reduction device was applied in the field. The results showed that the reduction rates of total dust and respirable dust in the feed port area of the transfer machine were significantly increased after the adoption of the hydrodynamic rotary spray dust reduction device, both of which reached more than 75%, and the mass concentration of respirable dust in the working place was reduced to 6.31 mg/m3. The research results provide a new idea for creating a safe, healthy and green coal mine production environment.

Key words: rotary spray    dynamic mesh    numerical simulation    negative-pressure dust reduction    dust reduction efficiency
收稿日期: 2024-01-19 出版日期: 2025-05-06
CLC:  TD 714  
基金资助: 国家重点研发计划资助项目(2022YFC2503201);安徽理工大学芜湖研究院研发专项资金资助项目(ALW2021YF12)
通讯作者: 王德俊     E-mail: ahhnds@163.com;2675023354@qq.com
作者简介: 关维娟(1981-),女,副教授,从事工业粉尘治理研究,E-mail: ahhnds@163.com, http://orcid.org/0009-0004-6216-1114
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
关维娟
陈清华
王德俊
江丙友
许曾生

引用本文:

关维娟,陈清华,王德俊,江丙友,许曾生. 基于动网格技术的水动力旋转喷雾降尘装置性能分析[J]. 工程设计学报, 2025, 32(2): 240-251.

Weijuan GUAN,Qinghua CHEN,Dejun WANG,Bingyou JIANG,Zengsheng XU. performance analysis of hydrodynamic rotary spray dust reduction device based on moving grid technology[J]. Chinese Journal of Engineering Design, 2025, 32(2): 240-251.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.102        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/240

图1  水动力旋转喷雾降尘装置结构
图2  水动力输出轴结构
图3  降尘原理示意
图4  降尘仿真流程
方案单元尺寸/mm单元数量/个

流场稳定转速/

(r/min)

水流最大出口速度/

(m/s)

相对误差/%求解耗时/h
A4.5166 0151 448.1648.8816.2
B3.0166 1891 438.3448.66-0.68, -0.4517.1
C1.5238 2351 454.6648.520.45, -0.7424.5
D1.0480 0621 444.4649.03-0.26, -0.3130.4
表1  水轴内流场模型网格独立性检验结果
方案单元尺寸/mm单元数量/个

雾粒最大轴向

速度/(m/s)

风流最大轴向速度/

(m/s)

相对误差/%求解耗时/h
a10.0604 31126.6921.174-5.39, -5.7712.4
b8.0794 93828.2141.11013.1
c6.01 302 26128.6461.1191.53, -0.8121.9
d4.03 067 20827.7911.114-1.50, -0.3636.7
表2  降尘装置内流场模型网格独立性检验结果
图5  水轴内流场三维模型
图6  水轴内流场模型整体网格和局部细化网格
图7  降尘装置内流场三维模型
图8  降尘装置内流场模型整体网格和局部细化网格
水轴内流场转速仿真模型降尘装置雾化性能仿真模型
类型属性参数值类型属性参数值
求解器类型Pressure-Based求解器类型Pressure-Based
时间Transient时间Transient
重力/ N9.81重力/N9.81
湍流模型k-epsilonRealizable湍流模型k-epsilonRealizable
区域条件水的密度/(kg/m3)998.2区域条件空气密度/(kg/m31.225
边界条件inletpressure-inlet水的密度/(kg/m3998.2
入口表压力/MPa2.0边界条件inlet-1velocity-inlet
outlet-1pressure-outletinlet-2
outlet-2inlet-3
outlet-3入口表速度/(m/s)水轴内流场转速
出口表压力/MPa0出、入口边界类型pressure-inlet/outlet
动网格网格方法Smoothing+Remeshing出、入口表压力/MPa0
控制器Six DOF动网格网格方法Smoothing+Remeshing
算法Coupled算法PISO
计算参数时间步长/s0.000 5计算参数时间步长/s0.000 5
时间步数160 000时间步数3 000
表3  水轴内流场转速和降尘装置雾化性能仿真模型参数
图9  水流出口速度云图
水轴出口角度/(°)水流最大出口速度/(m/s)
063.19
1560.91
3057.51
4548.88
6040.63
7534.36
9024.97
表4  水流最大出口速度
图10  水轴转速随水轴出口角度的变化曲线
图11  混合出口处雾粒轴向速度云图
图12  风流进口风流轴向速度云图
图13  水轴转速和风流轴向速度测试平台
图14  水轴转速和风流轴向速度实验值与仿真值的对比
图15  水动力旋转喷雾降尘装置降尘测试现场
图16  转载机区域粉尘质量浓度测点设置
测点粉尘性质粉尘质量浓度/(mg/m3)降尘率/%

工况

1

工况2工况3工况2工况3
A总尘47.5029.1010.2138.7478.51
呼吸性粉尘28.5018.676.9634.5375.58
B总尘132.5074.5523.4743.7482.29
呼吸性粉尘69.6741.3913.4340.5980.72
C总尘76.6746.5213.2139.3282.77
呼吸性粉尘43.0027.688.2635.6380.79
D总尘72.2248.2011.1633.2684.55
呼吸性粉尘38.6726.646.3131.1083.68
表5  转载机区域测点位置粉尘质量浓度及降尘率
10 蒋仲安, 王亚朋, 许峰. 金属矿山气-水喷头雾化特性及降尘能力实验研究[J]. 中南大学学报(自然科学版), 2020, 51(1): 184-192.
JIANG Z A, WANG Y P, XU F. Experimental study on atomization characteristics and dust reduction capacity of gas-water nozzles in metal mines[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 184-192.
11 聂文, 牛文进, 鲍秋, 等. 基于Dmol3模块的不同表面活性剂对煤尘润湿性的影响[J]. 煤炭学报, 2023, 48(3): 1255-1266.
NIE W, NIU W J, BAO Q, et al. Effect of different surfactants on the wettability of coal dust based on Dmol3 module[J]. Journal of China Coal Society, 2023, 48(3): 1255-1266.
12 王鹏飞, 邬高高, 袁新虎, 等. 微纳米气泡强化喷雾降尘试验研究[J]. 煤炭学报, 2022, 47(12): 4495-4503.
WANG P F, WU G G, YUAN X H, et al. An enhanced spray dust suppression method by micro-nano bubbles[J]. Journal of China Coal Society, 2022, 47(12): 4495-4503.
13 陈清华, 宋皓然, 崔锦琼, 等. 同向风速对内混式空气雾化喷嘴雾化特性的影响研究[J]. 煤矿安全, 2022, 53(5): 171-175.
CHEN Q H, SONG H R, CUI J Q, et al. Research on influence of same wind speed on atomization characteristics of internal mixing air atomizing nozzle[J]. Safety in Coal Mines, 2022, 53(5): 171-175.
14 杨洁, 胡胜勇, 刘湃, 等. 矿用湿式除尘器研发现状与发展趋势[J]. 煤矿安全, 2023, 54(8): 186-194.
YANG J, HU S Y, LIU P, et al. Research status and development trend of wet dust collector for mine[J]. Safety in Coal Mines, 2023, 54(8): 186-194.
15 高扬, 胡胜勇, 刘长河, 等. 矿用径混式旋流除尘器的研究与应用[J]. 煤炭工程, 2021, 53(10): 175-179.
GAO Y, HU S Y, LIU C H, et al. Research and application of radial mixing cyclone dust collector for mine[J]. Coal Engineering, 2021, 53(10): 175-179.
1 程卫民, 周刚, 陈连军, 等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术, 2020, 48(2): 1-20.
CHENG W M, ZHOU G, CHEN L J, et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1-20.
16 张立祥, 方宏勋, 陈岳松. KJS-Y系列矿用降尘器叶片优化设计[J]. 煤炭技术, 2022, 41(2): 197-199.
ZHANG L X, FANG H X, CHEN Y S. Optimization design of blade for KJS-Y series mine dust collector[J]. Coal Technology, 2022, 41(2): 197-199.
17 张宏, 郭奋超, 马亮, 等. 综掘工作面气水联动除尘装置影响因素及应用效果分析[J]. 中国安全生产科学技术, 2023, 19(3): 189-194.
ZHANG H, GUO F C, MA L, et al. Analysis on influencing factors and application effect of air-water linkage dust removal device in fully mechanized heading face[J]. Journal of Safety Science and Technology, 2023, 19(3): 189-194.
18 SHAO W, CUI Z, WANG N, et al. Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique[J].Science China Technological Sciences,2016,59(7):1065-1070.
19 肖聪, 罗英, 张宏亮, 等. 基于动网格技术的超临界水冷堆控制棒落棒及缓冲分析[J]. 核动力工程, 2017, 38(): 79-83.
XIAO C, LUO Y, ZHANG H L, et al. Analysis of control rod dropping and buffering behavior of supercritical water-cooled reactor based on dynamic grid technology[J]. Nuclear Power Engineering, 2017, 38 (): 79-83.
20 常波峰, 郭奋超, 马亮, 等. 喷雾降尘器防护结构设计与分析[J]. 矿山机械, 2022, 50(6): 49-53.
CHANG B F, GUO F C, MA L, et al. Design and analysis on protective structure for spray duster[J]. Mining & Processing Equipment, 2022, 50(6): 49-53.
21 夏田, 赵一号, 穆琪, 等. 高速机床导轨防护罩片的模态分析与试验[J]. 机械设计, 2021, 38(1): 42-46.
XIA T, ZHAO Y H, MU Q, et al. Modal analysis and experiment of the high-speed machine tool's guide rail shield[J]. Journal of Machine Design, 2021, 38(1): 42-46.
22 中华人民共和国应急管理部.应急管理部关于修改《煤矿安全规程》的决定[J]. 中华人民共和国国务院公报, 2022(10): 52-57.
Ministry of Emergency Management of the People's Republic of China. Decision of the Ministry of Emergency Management on amending the coal mine safety rules[J]. Gazette of the State Council of the People's Republic of China, 2022(10): 52-57.
23 中国煤炭工业协会科技发展部. 煤矿井下浮游粉尘浓度检测技术规范: [S]. 北京: 煤炭工业出版社,2019.
Science and Technology Development Department of China Coal Industry Association. Technical specifications of floating dust detection for underground coal mine: [S]. Beijing: China Coal Industry Publishing House, 2019.
24 中国煤炭工业协会. 煤矿井下粉尘综合防治技术规范: A [S]. 北京: 煤炭工业出版社, 2006.
China Coal Industry Association. Technical specifications of comprehensive dust control measures for underground coal mine: A [S]. Beijing: China Coal Industry Publishing House, 2006.
2 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭, 2021, 47(6): 1-6.
YUAN L. Study on the development strategy of coal mine safety in China[J]. China Coal, 2021, 47(6): 1-6.
3 中华人民共和国国务院. 国务院关于实施健康中国行动的意见[EB/OL]. (2019-07-15)[2024-01-09]. .
The State Council of the People's Republic of China. The state council's opinions on implementing healthy China action[EB/OL]. (2019-07-15)[2024-01-09]. .
4 刘震, 王文迪, 许文彪, 等. 煤层注水渗透率模型及水力耦合影响因素数值模拟研究[J]. 采矿与安全工程学报, 2021, 38(6): 1250-1258.
LIU Z, WANG W D, XU W B, et al. Permeability model of coal seam water injection and numerical simulation study of hydraulic coupling influencing factors[J]. Journal of Mining & Safety Engineering, 2021, 38(6): 1250-1258.
5 关万里, 白永亭. 神东矿区现代化掘进工作面一体化高效除尘技术及装备[J]. 中国煤炭, 2022, 48(S1): 62-67.
GUAN W L, BAI Y T. Integrated high-efficiency dust removal technology and equipment for modern heading face in Shendong mining area[J]. China Coal, 2022, 48(S1): 62-67.
6 陈举师, 蒋仲安, 王洪胜. 露天矿潜孔钻机泡沫发生器的性能实验[J]. 哈尔滨工业大学学报, 2016, 48(4): 166-171.
CHEN J S, JIANG Z A, WANG H S. Experiments on properties of foaming generator during down-the-hole drilling in open-pit mine[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 166-171.
7 姜伯洋, 齐艺裴, 张嘉勇, 等. 煤矿尘雾凝并降尘增效研究现状与展望[J/OL]. 煤炭科学技术, 2023: 1-18. (2023-12-08). .
JIANG B Y, QI Y P, ZHANG J Y, et al. Present situation and prospect of research on coal mine dust fog condensation and dust reduction efficiency[J/OL]. Coal Science and Technology, 2023: 1-18. (2023-12-08). .
8 王鹏飞, 邬高高, 田畅, 等. 基于正交试验的内混式空气雾化喷嘴结构参数优化[J]. 煤炭科学技术, 2023, 51(9): 129-139.
WANG P F, WU G G, TIAN C, et al. Structural parameters optimization of internal mixing air atomizing nozzle based on orthogonal experiment[J]. Coal Science and Technology, 2023, 51(9): 129-139.
9 周刚, 尹文婧, 冯博. 综采工作面移架尘源粉尘-雾滴场分布特征模拟分析与工程应用[J]. 煤炭学报, 2018, 43(12): 3425-3435.
ZHOU G, YIN W J, FENG B. Numerical simulation on the distribution characteristics of dust-droplet field during support movement in a fully-mechanized mining face and related engineering applications[J]. Journal of China Coal Society, 2018, 43(12): 3425-3435.
[1] 虞启辉,耿延歧,张立从. 基于动网格技术的双进/排气活塞式膨胀机动力性能研究[J]. 工程设计学报, 2025, 32(1): 132-140.
[2] 舒慧杰,胡国良,朱文才,喻理梵,李品烨. 基于BPHBP流变模型的磁流变阻尼器数值模拟与性能分析[J]. 工程设计学报, 2024, 31(3): 402-408.
[3] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[4] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[5] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[6] 张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.
[7] 钟功祥, 邹迪, 张兴. 基于CFD与ADAMS的三角转子气动机设计与仿真[J]. 工程设计学报, 2019, 26(3): 305-314.
[8] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[9] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[10] 邓嵘, 侯凯, 李孟华, 李向东. 混合式单牙轮钻头破岩性能研究[J]. 工程设计学报, 2018, 25(3): 262-269.
[11] 张露, 武鹏, 吴大转, 洪伟荣. 燃油系统旋涡泵压力脉动的控制研究[J]. 工程设计学报, 2017, 24(4): 395-402.
[12] 杨伟杰, 孟文俊, 邬思敏, 刘宝林, 齐向东. 新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证[J]. 工程设计学报, 2017, 24(2): 174-181.
[13] 李玉龙, 宋宇, 朱德泉, 蒋峰, 朱烨, 焦俊. 气动发动机缸内流场特性研究[J]. 工程设计学报, 2016, 23(3): 235-243.
[14] 夏 丽,武 鹏,吴大转. 蜗壳回流孔对自吸泵性能的影响[J]. 工程设计学报, 2015, 22(3): 284-289.
[15] 朱桂华,马凯,唐啸,高明泉,朱宏斌. 错位桨对污泥固液两相流混合的数值模拟[J]. 工程设计学报, 2015, 22(1): 49-53.