Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 232-239    DOI: 10.3785/j.issn.1006-754X.2025.04.155
优化设计     
基于压电喷墨打印技术的食管支架载药层制备
郑跃靖1,2(),梁文峰1,王婷婷3,李松2,4,朱慧轩2,4,张凯3()
1.沈阳建筑大学 机械工程学院,辽宁 沈阳 110186
2.中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016
3.中国医科大学附属盛京医院 消化内科内镜诊治中心,辽宁 沈阳 110004
4.中国科学院大学,北京 100049
Preparation of drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology
Yuejing ZHENG1,2(),Wenfeng LIANG1,Tingting WANG3,Song LI2,4,Huixuan ZHU2,4,Kai ZHANG3()
1.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110186, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Endoscopy Center of Gastroenterology Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2323 KB)   HTML
摘要:

食管狭窄是食管癌的主要症状之一,目前载药食管支架被广泛应用于食管狭窄的临床治疗。现阶段,载药食管支架的制备方法主要为浸涂法与喷涂法,但该类方法所制备的食管支架载药层的材料受限且覆膜精度不高。为解决上述问题,提出了一种基于压电喷墨打印技术的食管支架载药层制备方法。首先,运用有限元仿真法设计了压电喷墨打印平台的温控箱并优化了温控参数,以促进打印材料固化成形,拓宽载药层的使用材料。然后,深入探究了压电喷头驱动波形的电压幅值、斜率参数及脉冲宽度对液滴直径的影响,并优化了驱动波形参数,以提高载药层的覆膜精度。最后,开展载药层打印实验,以验证温控箱仿真设计与驱动波形参数优化的准确性与有效性。实验结果表明,GelMA(gelatin methacryloyl,甲基丙烯酰化明胶)水凝胶在-4~4 ℃时的成形效果良好;液滴直径与驱动波形的电压幅值和斜率参数均呈正相关,但存在最佳脉冲宽度。在确保打印精度的前提下,确定了上升沿电压幅值为30 V,上升沿斜率和下降沿斜率均为7 V/ms,脉冲宽度为1.5 ms,并利用该驱动波形成功打印了固化成形效果良好、精度高且均匀的食管支架载药层,这可为载药食管支架的制备提供新思路。

关键词: 食管支架喷墨打印驱动波形液滴直径GelMA水凝胶    
Abstract:

Esophageal stenosis is one of the main symptoms of esophageal cancer. Currently, the drug-carrying esophageal stents are widely used in the clinical treatment of esophageal stenosis. At present, the main preparation methods of drug-carrying esophageal stents are dip coating method and spray coating method, but the materials of the drug-carrying layer of esophageal stent prepared by these methods were limited and the coating accuracy is not high. To solve the above problems, a method for preparing the drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology is proposed. Firstly, the finite element simulation method was used to design the temperature control box for the piezoelectric inkjet printing platform and optimize the temperature control parameters, so as to promote the solidification of printing materials and broaden the materials used in the drug-carrying layer. Then, the influence of voltage amplitude, slope parameter and pulse width of the driving waveform for piezoelectric inkjet heads on the droplet diameter was deeply explored, and the driving waveform parameters were optimized to improve the coating accuracy of drug-carrying layer. Finally, the printing experiment for drug-carrying layer was conducted to verify the accuracy and effectiveness of the simulation design of temperature control box and the optimization of driving waveform parameters. The results showed that the GelMA (gelatin methacryloyl) hydrogel had a good forming effect at -4 to 4 ℃. The droplet diameter was positively correlated with the voltage amplitude and slope parameters of the driving waveform, but there was an optimal pulse width. Under the premise of ensuring printing accuracy, the rising edge voltage amplitude was determined to be 30 V, the rising edge slope and the falling edge slope were both 7 V/ms, and the pulse width was 1.5 ms. Using this driving waveform, a uniform drug-carrying layer of esophageal stent with good curing and forming effect and high accuracy was successfully printed, which could provide a new idea for the preparation of drug-carrying esophageal stents.

Key words: esophageal stent    inkjet printing    driving waveform    droplet diameter    GelMA hydrogel
收稿日期: 2024-07-05 出版日期: 2025-05-06
CLC:  TP 391.7  
基金资助: 国家自然科学基金资助项目(52205319);中国科学院青年创新促进会项目(2021200);辽宁省教育厅基本科研项目(JYTQN2023025);沈阳市中青年科技创新人才支持计划项目(RC220482);盛京345人才支持计划资助项目(M1317)
通讯作者: 张凯     E-mail: 1078594170@qq.com;zhangkaidoctor@163.com
作者简介: 郑跃靖(1999—),男,硕士生,从事生物制造研究,E-mail: 1078594170@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑跃靖
梁文峰
王婷婷
李松
朱慧轩
张凯

引用本文:

郑跃靖,梁文峰,王婷婷,李松,朱慧轩,张凯. 基于压电喷墨打印技术的食管支架载药层制备[J]. 工程设计学报, 2025, 32(2): 232-239.

Yuejing ZHENG,Wenfeng LIANG,Tingting WANG,Song LI,Huixuan ZHU,Kai ZHANG. Preparation of drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology[J]. Chinese Journal of Engineering Design, 2025, 32(2): 232-239.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.155        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/232

图1  压电喷墨打印平台结构示意
图2  压电喷头的驱动波形与工作原理
图3  温控箱仿真模型网格划分
图4  不同温控上盖温度下温控箱及转轴的温度变化规律
图5  驱动波形电压幅值对液滴直径的影响
图6  驱动波形斜率参数对液滴直径的影响
图7  驱动波形脉冲宽度对液滴直径的影响
图8  食管支架载药层打印结果
1 努日亚·艾尼瓦尔, 古丽巴哈尔·司马义. 食管支架在治疗良性、恶性食管狭窄的研究进展[J]. 世界最新医学信息文摘, 2019, 19(8): 100-101.
AINIWAER N R Y, SIMAYI G L B H E. Research progress of esophageal stent in the treatment of benign and malignant esophageal stenosis[J]. World Latest Medicine Information, 2019, 19(8): 100-101.
2 SIERSEMA P D. How to approach a patient with refractory or recurrent benign esophageal stricture[J]. Gastroenterology, 2019, 156(1): 7-10.
3 WEN J, LU Z S, YANG Y S, et al. Preventing stricture formation by covered esophageal stent placement after endoscopic submucosal dissection for early esophageal cancer[J]. Digestive Diseases and Sciences, 2014, 59(3): 658-663.
4 CHOU I T, YU F J, SHIH H Y, et al. Risk factors of stent migration in esophageal cancer patients who underwent fully-covered self-expanding metal stents for malignant dysphagia or tracheoesophageal fistula[J/OL]. Journal of the Formosan Medical Association, 2024(2024-05-31) [2024-06-20]. .
5 WU J Z, ZHOU C, LIU S, et al. TGF-β1 inhibitor P144 protects against benign restenosis after esophageal stenting through TGF-β1/Smads signaling pathway inhibition[J]. Arab Journal of Gastroenterology, 2024, 25(2): 214-222.
6 SUN D M, ZHENG Y M, YIN T Y, et al. Coronary drug-eluting stents: from design optimization to newer strategies[J]. Journal of Biomedical Materials Research Part A, 2014, 102(5): 1625-1640.
7 JIN Z, WU K Q, HOU J W, et al. A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: magnetocaloric drug release and esophagus tissue penetration[J]. Biomaterials, 2018, 153: 49-58.
8 FERREIRA-SILVA J, MEDAS R, GIROTRA M, et al. Futuristic developments and applications in endoluminal stenting[J]. Gastroenterology Research and Practice, 2022, 2022(1): 6774925.
9 YUAN T Y, LIU D D, LI Q, et al. 3D printing of melatonin-loaded esophageal stents for treatment of corrosive esophagitis[J]. Applied Materials Today, 2024, 37: 102161.
10 LIN M H, FIROOZI N, TSAI C T, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies[J]. Acta Biomaterialia, 2019, 83: 119-129.
11 FOULADIAN P, KOHLHAGEN J, ARAFAT M, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers[J]. Biomaterials Science, 2020, 8(23): 6625-6636.
12 LIU H, LEI T, MA C, et al. Optimization of driven waveform of piezoelectric printhead for 3D sand-printing[J]. Additive Manufacturing, 2021, 37: 101627.
13 YANG Z J, TIAN H M, WANG C H, et al. Actuation waveform optimization via multi-pulse crosstalk modulation for stable ultra-high frequency piezoelectric drop-on-demand printing[J]. Additive Manufacturing, 2022, 60: 103165.
14 ZHANG Y, MA L M, HUANG J, et al. The effect of paclitaxel-eluting covered metal stents versus covered metal stents in a rabbit esophageal squamous carcinoma model[J]. PLoS One, 2017, 12(3): e0173262.
15 LIU J Y, WANG Z M, WU K Q, et al. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer[J]. Biomaterials, 2015, 53: 592-599.
16 KONG B, CHEN Y, LIU R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma[J]. Nature Communications, 2020, 11: 1435.
17 LIU C J, YU Q F, YUAN Z Q, et al. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration[J]. Bioactive Materials, 2023, 25: 445-459.
18 CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9: 4.
19 李润, 梁文峰, 朱慧轩, 等. 高黏度压电式膜片喷头仿真分析与实验研究[J]. 微纳电子技术, 2023, 60(6): 948-956. doi:10.13250/j.cnki.wndz.2023.06.017
LI R, LIANG W F, ZHU H X, et al. Simulation analysis and experimental study of piezoelectric diaphragm nozzle with high viscosity[J]. Micronanoelectronic Technology, 2023, 60(6): 948-956.
doi: 10.13250/j.cnki.wndz.2023.06.017
20 ZHU H X, LI R, LI S, et al. Multi-physical field control piezoelectric inkjet bioprinting for 3D tissue-like structure manufacturing[J]. International Journal of Bioprinting, 2024, 10(3): 2120.
21 WIJAYANTI W, MUSYAROH, SASONGKO M N, et al. Modelling analysis of pyrolysis process with thermal effects by using COMSOL Multiphysics[J]. Case Studies in Thermal Engineering, 2021, 28: 101625.
22 纪闯. 高黏度生物材料的压电式微喷射3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
JI C. Research on the key technologies of piezoelectric micro jet 3D printing for high viscosity biomaterials[D]. Harbin: Harbin Institute of Technology, 2020.
[1] 王洪申, 刘敏, 强会英. 基于极半径曲面矩和HMM的三维模型分类与检索算法[J]. 工程设计学报, 2021, 28(4): 407-414.
[2] 贾强, 高跃飞, 佟彦发, 赵鹏. 直线型涡流缓冲装置的设计[J]. 工程设计学报, 2011, 18(3): 209-213.
[3] 肖登红, 王俊元, 曾志强, 杜文华. 防爆胶轮车动态特性研究[J]. 工程设计学报, 2011, 18(1): 23-27.
[4] 王春香, 李乐, 王建国. 基于提取特征的挖掘机斗齿的几何反求和模型重建[J]. 工程设计学报, 2010, 17(3): 211-214.
[5] 肖伟跃, 杨继荣, 蔡悦华. 基于模糊Petri网考虑制造约束的零件[J]. 工程设计学报, 2010, 17(2): 86-90.