机械零部件与装备设计 |
|
|
|
|
基于BP和HBP流变模型的磁流变阻尼器数值模拟与性能分析 |
舒慧杰( ),胡国良( ),朱文才,喻理梵,李品烨 |
华东交通大学 机电与车辆工程学院,江西 南昌 330013 |
|
Numerical simulation and performance analysis of magnetorheological damper based on BP and HBP rheological models |
Huijie SHU( ),Guoliang HU( ),Wencai ZHU,Lifan YU,Pinye LI |
School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
引用本文:
舒慧杰,胡国良,朱文才,喻理梵,李品烨. 基于BP和HBP流变模型的磁流变阻尼器数值模拟与性能分析[J]. 工程设计学报, 2024, 31(3): 402-408.
Huijie SHU,Guoliang HU,Wencai ZHU,Lifan YU,Pinye LI. Numerical simulation and performance analysis of magnetorheological damper based on BP and HBP rheological models[J]. Chinese Journal of Engineering Design, 2024, 31(3): 402-408.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.185
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/402
|
1 |
LIU Y, YANG S, LIAO Y. A new method of parameters identification for magnetorheological damper model[J]. Journal of Mechanical Engineering, 2018, 54(6): 62-68.
|
2 |
ALQADO T E, NIKOLAKOPOULOS G, DRITSAS L. Semi-active control of flexible structures using closed-loop input shaping techniques[J]. Structural Control & Health Monitoring, 2017, 24(5): 1-20.
|
3 |
POZNIC A, MILORADOVIC D, JUHAS A. A new magnetorheological brake's combined materials design approach[J]. Journal of Mechanical Science & Technology, 2017, 31(3): 1119-1125.
|
4 |
KUMAR S, SEHGAL R, WANI M F, et al. Stabilization and tribological properties of magnetorheological (MR) fluids: A review[J]. Journal of Magnetism and Magnetic Materials, 2021, 538: 168295.
|
5 |
HU G L, QI H N, CHEN M, et al. Optimal design of magnetorheological damper with multiple axial fluid flow channels using BP neural network and particle swarm optimization methodologies[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 67(3): 339-360.
|
6 |
HU G L, WU L F, DENG Y J, et al. Design and performance analysis of magnetorheological damper based on multiphysics coupling model[J]. Journal of Magnetism and Magnetic Materials, 2022, 558: 169527.
|
7 |
祝世兴,杨丽昆,魏戬,等.基于改进Bingham模型的磁流变阻尼器力学建模及试验研究[J].重庆理工大学学报(自然科学),2021,35(4):254-264. ZHU S X, YANG L K, WEI J, et al. Modeling and experimental study of magnetorheological damper based on improved bingham model[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(4): 254-264.
|
8 |
PEI P, PENG Y, QIU C. Magnetorheological damper modeling based on a refined constitutive model for MR fluids[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(10): 1271-1291.
|
9 |
ZHANG G, WANG H, QING O, et al. Numerical analysis of multiphysical field for independent three-stage magnetorheological damper of double rod during recoil process of artillery[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 4960-4979.
|
10 |
OUYANG Q, HU H, QIAN C, et al. Investigation of the influence of magnetic field distribution on the magnetorheological absorber with individually controllable coils[J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-13.
|
11 |
GUO P, XIE J, DONG X, et al. A two-dimensional axisymmetric finite element analysis of coupled inertial-viscous-frictional-elastic transients in magnetorheological dampers using the compressible herschel-bulkley fluid model[J]. Frontiers in Materials, 2019, 6(1): 000293.
|
12 |
KEMERLI M, ENGIN T. Numerical analysis of a monotube mixed mode magnetorheological damper by using a new rheological approach in CFD[J]. Rheologica Acta, 2021, 60(1): 77-95.
|
13 |
吴俊岐,侯保林.基于FLUENT的磁流变阻尼器阻尼特性分析[J].兵器装备工程学报,2017,38(11):142-145. doi:10.11809/scbgxb2017.11.031 WU J Q, HOU B L. Analysis of damping characteristics of magnetorheological (MR) damper based on FLUENT[J]. Journal of Ordnance Engineering, 2017, 38(11): 142-145.
doi: 10.11809/scbgxb2017.11.031
|
14 |
ELSAADY W, OYADIJI S O, NASSER A. A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compressible fluids in MR dampers[J]. International Journal of Mechanical Sciences, 2020, 167(C): 105265.
|
15 |
CVEK M. Constitutive models that exceed the fitting capabilities of the Herschel-Bulkley model: A case study for shear magnetorheology[J]. Mechanics of Materials, 2022, 173(10): 104445.
|
16 |
LÜ J C, WU M Y, ZHAO T, et al. Accurate prediction of magnetorheological damper characteristics based on a new rheological constitutive model[J]. Structures, 2023, 50: 108-117.
|
17 |
WEI Y T, LÜ J C, TANG Z, et al. A universal rheological constitutive equation of magnetorheological fluids with a wide shear rate range[J]. Journal of Magnetism and Magnetic Materials, 2022, 563: 169811.
|
18 |
LI H P, JÖNKKÄRI I, SARLIN E, et al. Temperature effects and temperature-dependent constitutive model of magnetorheological fluids[J]. Rheologica Acta, 2021, 60(11): 719-728.
|
19 |
ÖNEN M C, PARLAK Z. Investigation of a non-newtonian MR fluid flow between parallel plates by developed CFD code for different numerical schemes[J]. Smart Materials and Structures, 2022, 31(7): 075006.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|