Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 402-408    DOI: 10.3785/j.issn.1006-754X.2024.03.185
机械零部件与装备设计     
基于BPHBP流变模型的磁流变阻尼器数值模拟与性能分析
舒慧杰(),胡国良(),朱文才,喻理梵,李品烨
华东交通大学 机电与车辆工程学院,江西 南昌 330013
Numerical simulation and performance analysis of magnetorheological damper based on BP and HBP rheological models
Huijie SHU(),Guoliang HU(),Wencai ZHU,Lifan YU,Pinye LI
School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(4363 KB)   HTML
摘要:

针对传统本构模型表达磁流变液的流变特性精度不高的问题,采用MCR302流变仪对磁流变液的流变特性进行测试,获得了不同磁场下剪切应力与剪切速率之间的关系。利用遗传算法对Bingham-Papanastasiou(BP)模型和Herschel-Bulkley-Papanastasiou(HBP)模型进行参数辨识。利用辨识结果建立了仿真模型,对磁流变阻尼器的动态特性进行数值模拟。设计并加工了磁流变阻尼器,搭建了阻尼力测试平台进行阻尼力测试实验,并将实验结果与仿真结果进行对比。结果表明:HBP模型对磁流变液流变特性的辨识结果与实验结果吻合较好;2个模型对阻尼器动态特性的预测结果相差较大,仅对流速的预测一致性较好;基于HBP模型的阻尼力预测值与实验值较吻合。所提出的HBP模型表达磁流变液流变特性的精度较高,具有良好的实用价值。研究结果可以为振动控制领域磁流变阻尼器力学模型的选择提供参考。

关键词: 流变特性磁流变液数值模拟参数辨识    
Abstract:

To solve the problem that the traditional constitutive model was not accurate in expressing the rheological characteristics of magnetorheological (MR) fluid, the rheological characteristics of MR fluid were tested by using the MCR302 rheometer, and the relationship between shear stress and shear rate under different magnetic fields was obtained. Genetic algorithm was used to identify the parameters of Bingham-Papanastasiou (BP) model and Herschel-Bulkley-Papanastasiou (HBP) model. The simulation model was established based on the identification results, and the dynamic characteristics of the MR damper were simulated numerically. A MR damper was designed and processed, and a damping force test platform was built to test the damping force, and the experimental results were compared with the simulation results. The results showed that the identification results of the rheological characteristics of MR fluid by HBP model were in good agreement with the experimental results. The prediction results of the two models were quite different in the dynamic characteristics of the damper, but the prediction consistency of the flow rate was good. The predicted value of damping force based on HBP model was in good agreement with the experiment value. The proposed HBP model could express the rheological characteristics of MR fluid with high accuracy and had good practical value. The research results can provide reference for the selection of mechanical model of MR damper in vibration control field.

Key words: rheological characteristic    magnetorheological (MR) fluid    numerical simulation    parameter identification
收稿日期: 2023-07-03 出版日期: 2024-06-27
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(52165004);江西省自然科学基金重点资助项目(20212ACB204002);江西省国际科技合作重点项目(20232BBH80010)
通讯作者: 胡国良     E-mail: 2627079815@qq.com;glhu@ecjtu.edu.cn
作者简介: 舒慧杰(1998—),男,江西吉安人,硕士生,从事磁流变阻尼器结构设计及优化研究,E-mail: 2627079815@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒慧杰
胡国良
朱文才
喻理梵
李品烨

引用本文:

舒慧杰,胡国良,朱文才,喻理梵,李品烨. 基于BPHBP流变模型的磁流变阻尼器数值模拟与性能分析[J]. 工程设计学报, 2024, 31(3): 402-408.

Huijie SHU,Guoliang HU,Wencai ZHU,Lifan YU,Pinye LI. Numerical simulation and performance analysis of magnetorheological damper based on BP and HBP rheological models[J]. Chinese Journal of Engineering Design, 2024, 31(3): 402-408.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.185        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/402

图1  测试所得磁流变液流变特性曲线
图2  测试及通过BP模型所得的磁流变液流变特性曲线
B/Tμp/(Pa·s)τy/Pamp/s
00.801.106 3
0.040.8204.31.050 0
0.080.81 000.00.800 0
0.120.82 776.90.060 7
0.160.84 464.60.028 8
0.200.85 881.80.025 3
0.240.87 610.40.021 0
0.280.89 251.10.014 7
0.320.89 300.20.014 3
0.360.810 5210.014 7
0.400.812 6100.014 7
0.440.813 3270.147 0
0.480.814 0000.014 6
0.520.814 2230.014 7
0.560.814 4830.014 7
0.640.814 8320.014 7
0.720.814 5950.014 7
表1  BP模型参数辨识结果
图3  测试及通过HBP模型所得的磁流变液流变特性曲线
B/Tτy/Pamp/sm/(Pa·s)n
00.938 41.0010.119 50.920 5
0.041000.5001200.249 2
0.08393.30.114438.80.184 7
0.121 0000.0307400.181 8
0.161 7730.014 11 1420.165 5
0.202 5000.011 341 5080.152 9
0.243 4000.008 791 8850.149 7
0.284 1750.0052 5950.129 2
0.324 8000.004 23 0500.124 6
0.365 4000.003 73 5000.118 4
0.405 8000.003 73 9000.114 2
0.446 0500.003 654 2500.110 4
0.486 3500.003 654 5820.103 0
0.526 5500.003 654 8000.099 37
0.566 8000.003 65 0000.094 09
0.647 0000.003 65 4000.084 48
0.727 1500.003 65 6520.077 46
0.807 2560.003 65 7500.073 57
表2  HBP模型参数辨识结果
符号参数数值
r1活塞头孔径5.0
r2绕线架半径13.0
r3活塞头半径20.5
r4缸体内径21.5
r5缸体外径29.5
r6活塞杆外径8.0
L1绕线槽宽33.0
L2活塞头宽45.0
L3缸体宽95.0
表3  磁流变阻尼器结构参数 (mm)
图4  磁流变阻尼器参数化模型
图5  基于不同模型的有效阻尼间隙处的磁感应强度
图6  有效阻尼间隙处磁流变液黏度随电流的变化曲线
图7  激励电流为0.25 A、振动时间为1 s时流体区域的流速分布云图
图8  激励电流为0.25 A、振动时间为1 s时流体区域的压力分布云图
I/A

基于BP模型的

阻尼力/N

基于HBP模型的

阻尼力/N

0295.5859.986
0.25438.56377.24
0.50617.68780.24
1.00640.561 050.23
1.50644.351 158.92
表4  激励电流为0.25 A、振动时间为1 s时阻尼力仿真结果
图9  磁流变阻尼器实物
图10  阻尼力测试平台
图11  阻尼力随激励电流的变化曲线
图12  不同激励电流下阻尼力测试值与仿真值的对比
1 LIU Y, YANG S, LIAO Y. A new method of parameters identification for magnetorheological damper model[J]. Journal of Mechanical Engineering, 2018, 54(6): 62-68.
2 ALQADO T E, NIKOLAKOPOULOS G, DRITSAS L. Semi-active control of flexible structures using closed-loop input shaping techniques[J]. Structural Control & Health Monitoring, 2017, 24(5): 1-20.
3 POZNIC A, MILORADOVIC D, JUHAS A. A new magnetorheological brake's combined materials design approach[J]. Journal of Mechanical Science & Technology, 2017, 31(3): 1119-1125.
4 KUMAR S, SEHGAL R, WANI M F, et al. Stabilization and tribological properties of magnetorheological (MR) fluids: A review[J]. Journal of Magnetism and Magnetic Materials, 2021, 538: 168295.
5 HU G L, QI H N, CHEN M, et al. Optimal design of magnetorheological damper with multiple axial fluid flow channels using BP neural network and particle swarm optimization methodologies[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 67(3): 339-360.
6 HU G L, WU L F, DENG Y J, et al. Design and performance analysis of magnetorheological damper based on multiphysics coupling model[J]. Journal of Magnetism and Magnetic Materials, 2022, 558: 169527.
7 祝世兴,杨丽昆,魏戬,等.基于改进Bingham模型的磁流变阻尼器力学建模及试验研究[J].重庆理工大学学报(自然科学),2021,35(4):254-264.
ZHU S X, YANG L K, WEI J, et al. Modeling and experimental study of magnetorheological damper based on improved bingham model[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(4): 254-264.
8 PEI P, PENG Y, QIU C. Magnetorheological damper modeling based on a refined constitutive model for MR fluids[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(10): 1271-1291.
9 ZHANG G, WANG H, QING O, et al. Numerical analysis of multiphysical field for independent three-stage magnetorheological damper of double rod during recoil process of artillery[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 4960-4979.
10 OUYANG Q, HU H, QIAN C, et al. Investigation of the influence of magnetic field distribution on the magnetorheological absorber with individually controllable coils[J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-13.
11 GUO P, XIE J, DONG X, et al. A two-dimensional axisymmetric finite element analysis of coupled inertial-viscous-frictional-elastic transients in magnetorheological dampers using the compressible herschel-bulkley fluid model[J]. Frontiers in Materials, 2019, 6(1): 000293.
12 KEMERLI M, ENGIN T. Numerical analysis of a monotube mixed mode magnetorheological damper by using a new rheological approach in CFD[J]. Rheologica Acta, 2021, 60(1): 77-95.
13 吴俊岐,侯保林.基于FLUENT的磁流变阻尼器阻尼特性分析[J].兵器装备工程学报,2017,38(11):142-145. doi:10.11809/scbgxb2017.11.031
WU J Q, HOU B L. Analysis of damping characteristics of magnetorheological (MR) damper based on FLUENT[J]. Journal of Ordnance Engineering, 2017, 38(11): 142-145.
doi: 10.11809/scbgxb2017.11.031
14 ELSAADY W, OYADIJI S O, NASSER A. A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compressible fluids in MR dampers[J]. International Journal of Mechanical Sciences, 2020, 167(C): 105265.
15 CVEK M. Constitutive models that exceed the fitting capabilities of the Herschel-Bulkley model: A case study for shear magnetorheology[J]. Mechanics of Materials, 2022, 173(10): 104445.
16 LÜ J C, WU M Y, ZHAO T, et al. Accurate prediction of magnetorheological damper characteristics based on a new rheological constitutive model[J]. Structures, 2023, 50: 108-117.
17 WEI Y T, LÜ J C, TANG Z, et al. A universal rheological constitutive equation of magnetorheological fluids with a wide shear rate range[J]. Journal of Magnetism and Magnetic Materials, 2022, 563: 169811.
18 LI H P, JÖNKKÄRI I, SARLIN E, et al. Temperature effects and temperature-dependent constitutive model of magnetorheological fluids[J]. Rheologica Acta, 2021, 60(11): 719-728.
19 ÖNEN M C, PARLAK Z. Investigation of a non-newtonian MR fluid flow between parallel plates by developed CFD code for different numerical schemes[J]. Smart Materials and Structures, 2022, 31(7): 075006.
[1] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[2] 章亦聪, 朱玮, 吴玉国, 时礼平. 莱洛三角形微孔织构化端面密封性能数值模拟[J]. 工程设计学报, 2020, 27(1): 103-110.
[3] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[4] 钟功祥, 邹迪, 张兴. 基于CFD与ADAMS的三角转子气动机设计与仿真[J]. 工程设计学报, 2019, 26(3): 305-314.
[5] 张晓东, 陈龙. 基于冲蚀磨损理论的新型内防喷器阀座锥角研究[J]. 工程设计学报, 2019, 26(3): 287-298.
[6] 李舜酩, 王一博, 顾信忠. 基于流场分析的某割草车节能优化设计[J]. 工程设计学报, 2018, 25(6): 683-689.
[7] 张园, 彭振华, 高定祥, 任海涛, 唐一鑫. 芯管式稠油掺稀混合器设计及其掺混性能研究[J]. 工程设计学报, 2018, 25(5): 510-517.
[8] 吕红明, 钱坤才. 基于模态频率特征的浮钳盘式制动器盘块间法向接触刚度辨识方法[J]. 工程设计学报, 2018, 25(4): 388-393.
[9] 邓嵘, 侯凯, 李孟华, 李向东. 混合式单牙轮钻头破岩性能研究[J]. 工程设计学报, 2018, 25(3): 262-269.
[10] 白先旭, 程伟, 徐时旭, 钱立军. 坐姿人体四自由度动力学模型研究——集中参数模型及其在汽车乘坐舒适性研究中的应用[J]. 工程设计学报, 2017, 24(6): 638-647.
[11] 张露, 武鹏, 吴大转, 洪伟荣. 燃油系统旋涡泵压力脉动的控制研究[J]. 工程设计学报, 2017, 24(4): 395-402.
[12] 杨伟杰, 孟文俊, 邬思敏, 刘宝林, 齐向东. 新型铁路隧道落煤吸尘装置吸煤特性仿真分析与试验验证[J]. 工程设计学报, 2017, 24(2): 174-181.
[13] 夏 丽,武 鹏,吴大转. 蜗壳回流孔对自吸泵性能的影响[J]. 工程设计学报, 2015, 22(3): 284-289.
[14] 朱桂华,马凯,唐啸,高明泉,朱宏斌. 错位桨对污泥固液两相流混合的数值模拟[J]. 工程设计学报, 2015, 22(1): 49-53.
[15] 马姗,王发展,王博,王欣,吴振,王哲. 机械搅拌自吸式浮选机气-液-固三相流场的数值研究[J]. 工程设计学报, 2014, 21(1): 62-67.