Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 404-414    DOI: 10.3785/j.issn.1008-973X.2026.02.019
    
Emergency braking behavior recognition based on EEG multi-scale features and graph neural networks
Guanghui YAN(),Xiao HUANG,Wenwen CHANG
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(3258KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Existing techniques primarily rely on traditional time-frequency domain features and neglect the spatial domain features of brain activity. To classify emergency braking intentions and normal driving, a new model integrating multi-scale convolution, brain functional networks, and graph convolutional neural networks was proposed. First, multi-scale convolution was used to extract multi-scale features fused from the time-frequency domain. Then, a brain functional network was constructed based on the brain functional connectivity measurement matrix to obtain spatial graph structure information. Finally, graph convolutional neural networks were employed to integrate multi-scale features and spatial graph structure information for the classification of emergency braking EEG signals. Experimental results showed that the proposed model achieved an accuracy of over 93.00% across multiple subjects in a public dataset, with a maximum of 95.60%. In the single-subject condition, the accuracy exceeded 92.00%, reaching as high as 98.94%. Ablation experiments confirmed that each module significantly contributed to the improvement of the model’s performance. Compared to six existing EEG signal classification algorithms on the same dataset, the proposed model showed superior performance.



Key wordsemergency braking      electroencephalography (EEG)      multi-scale features      brain functional network      graph convolutional neural network     
Received: 18 January 2025      Published: 03 February 2026
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62366028,62466032,2421090);中国国家铁路集团有限公司科技研究开发计划重点课题(2024G036);甘肃省科技重大专项(23ZDFA012);甘肃省科技计划项目(24JRRA256);甘肃省教育厅青年博士项目(2023QB-038).
Cite this article:

Guanghui YAN,Xiao HUANG,Wenwen CHANG. Emergency braking behavior recognition based on EEG multi-scale features and graph neural networks. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 404-414.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.019     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/404


基于脑电多尺度特征和图神经网络的紧急制动行为识别

现有技术主要依赖传统的时频域特征,对脑活动空间域特征的研究不足. 为了实现对紧急制动意图和正常驾驶的分类识别,提出融合多尺度卷积、脑功能网络和图卷积神经网络的新模型. 利用多尺度卷积提取时频域融合的多尺度特征;基于脑功能连接测量矩阵构建脑功能网络,得到空间图结构信息;采用图卷积神经网络融合多尺度特征和空间图结构信息,实现对紧急制动脑电信号的分类识别. 实验结果表明,所提模型在公开数据集上多被试的准确率均超过93.00%,最高达到95.60%;在单被试条件下,准确率均超过92.00%,最高达到98.94%. 消融实验验证了所提模型各模块均对模型性能的提升具有显著贡献. 在相同数据集下,所提模型比已有的6种脑电信号分类算法更具优势.


关键词: 紧急制动,  脑电信号(EEG),  多尺度特征,  脑功能网络,  图卷积神经网络 
Fig.1 Experimental pattern diagram
Fig.2 Schematic diagram of EEG channel locations
Fig.3 Framework diagram of emergency-braking recognition model integrating multi-scale convolution, brain functional networks and graph convolutional neural networks
Fig.4 Weight-frequency histogram of brain functional connectivity measurement matrix
Fig.5 Feature fusion process
Fig.6 Brain functional networks of two driving states under different brain functional connectivity measurement matrices
特征参数额叶颞叶中央区顶叶枕叶
BC******
CC**
ASS*****
TRA*******
Ge******
Tab.1 Differences of network characteristic parameters in threshold phase locking value matrix
Fig.7 Model performance metrics under different time window sizes
Fig.8 Model performance metrics with different numbers of scale-wise convolution kernels
Fig.9 Multi-subject 10-fold cross-validation results of model performance across different brain functional connectivity measurement matrices
Fig.10 Single-subject results of model performance across different brain functional connectivity measurement matrices
Fig.11 Single-subject confusion matrix with different accuracy
模型AccPRF1AUC
无 GCN93.0293.0993.0193.0193.01
无 MSC92.9692.9792.9592.9692.95
本研究93.3893.4493.3693.3793.36
Tab.2 Module ablation experiment results %
算法Acc/%P/%R/%F1/%AUC/%tt/min
EEGNet91.4691.5391.4591.4591.4540.26
DeepConvNet90.8391.1390.8190.8290.81466.09
BiRNN86.6786.6786.6786.6789.29129.60
DGCNN91.0891.0991.0892.0891.0810.42
本研究93.3893.4493.3693.3793.3648.72
Tab.3 Comparison of classification performance metrics across different models
[1]   World Health Organization. Road traffic injuries [EB/OL]. (2023–12–13)[2024–11–18]. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
[2]   HAGHANI M, BLIEMER M C J, FAROOQ B, et al Applications of brain imaging methods in driving behaviour research[J]. Accident Analysis and Prevention, 2021, 154: 106093
doi: 10.1016/j.aap.2021.106093
[3]   程文鑫, 闫光辉, 常文文, 等 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报: 工学版, 2025, 59 (9): 1775- 1783
CHENG Wenxin, YAN Guanghui, CHANG Wenwen, et al Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (9): 1775- 1783
[4]   JU J, LI H A survey of EEG-based driver state and behavior detection for intelligent vehicles[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2024, 6 (3): 420- 434
doi: 10.1109/TBIOM.2024.3400866
[5]   HAUFE S, TREDER M S, GUGLER M F, et al EEG potentials predict upcoming emergency brakings during simulated driving[J]. Journal of Neural Engineering, 2011, 8 (5): 056001
doi: 10.1088/1741-2560/8/5/056001
[6]   HAUFE S, KIM J W, KIM I H, et al Electrophysiology-based detection of emergency braking intention in real-world driving[J]. Journal of Neural Engineering, 2014, 11 (5): 056011
doi: 10.1088/1741-2560/11/5/056011
[7]   KIM I H, KIM J W, HAUFE S, et al Detection of braking intention in diverse situations during simulated driving based on EEG feature combination[J]. Journal of Neural Engineering, 2015, 12 (1): 016001
doi: 10.1088/1741-2560/12/1/016001
[8]   LEE S M, KIM J W, LEE S W. Detecting driver’s braking intention using recurrent convolutional neural networks based EEG analysis [C]// Proceedings of the 4th IAPR Asian Conference on Pattern Recognition. Nanjing: IEEE, 2018: 840–845.
[9]   HERNÁNDEZ L G, MOZOS O M, FERRÁNDEZ J M, et al EEG-based detection of braking intention under different car driving conditions[J]. Frontiers in Neuroinformatics, 2018, 12: 29
doi: 10.3389/fninf.2018.00029
[10]   TENG T, BI L, LIU Y EEG-based detection of driver emergency braking intention for brain-controlled vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (6): 1766- 1773
doi: 10.1109/TITS.2017.2740427
[11]   WANG H, BI L, FEI W, et al. An EEG-based multi-classification method of braking intentions for driver-vehicle interaction [C]// Proceedings of the IEEE International Conference on Real-time Computing and Robotics. Irkutsk: IEEE, 2020: 438–441.
[12]   NGUYEN T H, CHUNG W Y Detection of driver braking intention using EEG signals during simulated driving[J]. Sensors, 2019, 19 (13): 2863
doi: 10.3390/s19132863
[13]   ZHANG X, YAN X, STYLLI J, et al Exploring the effects of EEG signals on collision cases happening in the process of young drivers’ braking[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80: 381- 398
doi: 10.1016/j.trf.2021.05.010
[14]   NACPIL E J C, WANG Z, GUAN M, et al EEG-based emergency braking prediction using data ablation and SVM classification[J]. IEEE Sensors Journal, 2023, 23 (14): 16013- 16019
doi: 10.1109/JSEN.2023.3283447
[15]   LIANG X, YU Y, LIU Y, et al EEG-based emergency braking intention detection during simulated driving[J]. BioMedical Engineering OnLine, 2023, 22 (1): 65
doi: 10.1186/s12938-023-01129-4
[16]   FAHIMI F, ZHANG Z, GOH W B, et al Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI[J]. Journal of Neural Engineering, 2019, 16 (2): 026007
doi: 10.1088/1741-2552/aaf3f6
[17]   DING Y, ROBINSON N, TONG C, et al LGGNet: learning from local-global-graph representations for brain–computer interface[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (7): 9773- 9786
doi: 10.1109/TNNLS.2023.3236635
[18]   WANG H, BI L, TENG T Neural correlates and detection of braking intention under critical situations based on the power spectra of electroencephalography signals[J]. Science China Information Sciences, 2019, 63 (1): 119202
[19]   LACHAUX J P, RODRIGUEZ E, MARTINERIE J, et al Measuring phase synchrony in brain signals[J]. Human Brain Mapping, 1999, 8 (4): 194- 208
doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
[20]   STAM C J, NOLTE G, DAFFERTSHOFER A Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007, 28 (11): 1178- 1193
doi: 10.1002/hbm.20346
[21]   PEARSON K Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs[J]. Proceedings of the Royal Society of London, 1897, 60: 489- 498
[22]   LV R, CHANG W, YAN G, et al A novel recognition and classification approach for motor imagery based on spatio-temporal features[J]. IEEE Journal of Biomedical and Health Informatics, 2025, 29 (1): 210- 223
doi: 10.1109/JBHI.2024.3464550
[23]   袁月婷, 闫光辉, 常文文, 等 基于脑电信号空域特征的紧急制动行为识别[J]. 电子科技大学学报, 2024, 53 (1): 84- 91
YUAN Yueting, YAN Guanghui, CHANG Wenwen, et al Emergency braking behavior recognition based on spatial features of EEG[J]. Journal of University of Electronic Science and Technology of China, 2024, 53 (1): 84- 91
[24]   SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
[25]   SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
[26]   常文文, 闫光辉, 杨志飞, 等 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测[J]. 电子学报, 2023, 51 (10): 2874- 2883
CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al Detection of driving state under different curve road based on entropy and functional connectivity of EEG[J]. Acta Electronica Sinica, 2023, 51 (10): 2874- 2883
[27]   LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
[28]   HOU Y, JIA S, LUN X, et al GCNs-net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (6): 7312- 7323
doi: 10.1109/TNNLS.2022.3202569
[1] Xinyu WEI,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG. High-precision real-time semantic segmentation network for UAV remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1411-1420.
[2] Mengyao ZHANG,Jie ZHOU,Wenting LI,Yong ZHAO. Three-dimensional mesh segmentation framework using global and local information[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 912-919.
[3] Yixuan LI,Ying LI,Qian XIAO,Lingyue WANG,Ning YIN,Shuo YANG. EEG microstate functional network analysis of different emotional false memories[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 49-61.
[4] Jinye LI,Yongqiang LI. Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1366-1376.
[5] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.
[6] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[7] Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.
[8] Chuan-hua ZHOU,Li-chun CAO,Jia-yi ZHOU,Feng ZHAN. Identification of critical nodes in temporal networks based on graph convolution union computing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 930-938.
[9] Zhao-meng CHEN,Xiao-jun ZHOU,Chen-long YANG,Hao-liang LV,Jie-chao WEI. Emergency braking control strategy for high speed electric drive tracked vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 442-449.
[10] TONG Ji-jun, LI Lin, LIN Qin-guang, ZHU Dan-hua. SSVEP brain-computer interface (BCI) system using smoothed pseudo Wigner-Ville distribution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 598-604.