|
|
Illumination-aware color consistency algorithm for cross-camera applications |
Minhang YANG( ),Haisong XU*( ),Yiming HUANG,Zhengnan YE,Yuntao ZHANG,Bin HU |
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The issue of color inconsistency between images was caused by the differences in camera sensor spectral sensitivities and built-in image signal processing (ISP) modules. Two illumination-aware color consistency algorithms for cross-camera applications, namely the correlated-color-temperatures (CCT)-aware adaptive partitioning mapping algorithm and the category-aware adaptive classification mapping algorithm, were proposed to convert the RAW image from the color space of the source camera to that of the target camera. Specifically, by deriving the final mapping operator for the target scene based on the training operators obtained under typical light sources of different CCTs and types, specific mapping relationships were established for different lighting scenarios, thereby achieving the cross-camera image conversion. The performance of the algorithms was objectively evaluated using color difference metrics in the experiments. Results illustrated that both of the proposed algorithms could achieve better performance in terms of color difference and visual effect compared to the existing classical methods, effectively adapting to the diversity and complexity of lighting conditions, thereby exhibiting their potential for wide applications.
|
Received: 28 December 2023
Published: 10 March 2025
|
|
Fund: 中央高校基本科研业务费专项资金资助项目(S20220156). |
Corresponding Authors:
Haisong XU
E-mail: yangmh011899@163.com;chsxu@zju.edu.cn
|
基于光源感知的跨相机颜色一致性算法
针对相机传感器光谱灵敏度和内置图像信号处理(ISP)模块差异导致的图像间颜色不一致的问题,提出2种基于光源感知的跨相机颜色一致性算法,即色温(CCT)感知的自适应分区映射算法和类别感知的自适应分类映射算法,用于将 RAW 图像从待处理相机的颜色空间转换到目标相机的颜色空间. 通过在不同色温和类型的典型光源下得到的训练算子来推导目标场景最终的映射算子,为不同照明场景建立特定的映射关系,进而实现跨相机图像的转换. 在实验中采用颜色差异指标来对算法进行客观评估,结果表明所提出的2种算法在色差和视觉效果方面均比现有经典方法展现出更好的性能,能够有效适应照明条件的多样性和复杂性,具有广泛的应用潜力.
关键词:
图像处理,
颜色一致性,
跨相机应用,
RAW图像,
光源感知
|
|
[1] |
JIANG J, LIU D, GU J, et al. What is the space of spectral sensitivity functions for digital color cameras? [C]// IEEE Workshop on Applications of Computer Vision . Clearwater Beach: 2013: 168–179.
|
|
|
[2] |
RAMANATH R, SNYDER W E, YOO Y, et al Color image processing pipeline[J]. IEEE Signal Processing Magazine, 2005, 22 (1): 34- 43
doi: 10.1109/MSP.2005.1407713
|
|
|
[3] |
KARAIMER H C, BROWN M S. A software platform for manipulating the camera imaging pipeline [C]// Computer Vision–ECCV 2016: 14th European Conference . Amsterdam: Springer, 2016: 429–444.
|
|
|
[4] |
GONG H, FINLAYSON G D, FISHER R B, et al 3D color homography model for photo-realistic color transfer re-coding[J]. The Visual Computer, 2019, 35 (3): 323- 333
doi: 10.1007/s00371-017-1462-x
|
|
|
[5] |
ANIRUDTH N, PRASAD B P, JAIN A, et al. Robust photometric alignment for asymmetric camera system [C]// IEEE International Conference on Consumer Electronics . Las Vegas: IEEE, 2018: 1–4.
|
|
|
[6] |
OLIVEIRA M, SAPPA A D, SANTOS V. Unsupervised local color correction for coarsely registered images [C]// IEEE Conference on Computer Vision and Pattern Recognition . Colorado Springs: IEEE, 2011: 201–208.
|
|
|
[7] |
WANG H, DAI L, ZHANG X. Consistent segmentation based color correction for coarsely registered images [C]// 2nd IAPR Asian Conference on Pattern Recognition . Naha: IEEE, 2013: 319–324.
|
|
|
[8] |
CHISTOV E, ALUTIS N, VATOLIN D, et al. Color mismatches in stereoscopic video: real-world dataset and deep correction method [EB/OL]. (2023-06-15)[2024-2-22]. https://arxiv.org/abs/2303.06657.
|
|
|
[9] |
TIAN Q C, COHEN L D. Color correction in image stitching using histogram specification and global mapping [C]// 6th International Conference on Image Processing Theory, Tools and Applications . Oulu: IEEE, 2016: 1–6.
|
|
|
[10] |
DING C Q, MA Z Multi-camera color correction via hybrid histogram matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (9): 3327- 3337
doi: 10.1109/TCSVT.2020.3038484
|
|
|
[11] |
HWANG Y, LEE J Y, KWEON I S, et al Probabilistic moving least squares with spatial constraints for nonlinear color transfer between images[J]. Computer Vision and Image Understanding, 2019, 180: 1- 12
doi: 10.1016/j.cviu.2018.11.001
|
|
|
[12] |
LI Y, YIN H, YAO J, et al A unified probabilistic framework of robust and efficient color consistency correction for multiple images[J]. Journal of Photogrammetry and Remote Sensing, 2022, 190: 1- 24
doi: 10.1016/j.isprsjprs.2022.05.009
|
|
|
[13] |
THANH O V, CANHAM T, VAZQUEZ-CORRAL J, et al. Color stabilization for multi-camera light-field imaging [C]// 2020 IEEE International Conference on Acoustics, Speech and Signal Processing . Barcelona: IEEE, 2020: 2148–2152.
|
|
|
[14] |
GIL RODRÍGUEZ R, VAZQUEZ-CORRAL J, BERTALMÍO M Color matching images with unknown non-linear encodings[J]. IEEE Transactions on Image Processing, 2020, 29: 4435- 4444
doi: 10.1109/TIP.2020.2968766
|
|
|
[15] |
OSKARSSON M. Robust image-to-image color transfer using optimal inlier maximization [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 786–795.
|
|
|
[16] |
ZHAO Y F, FERGUSON S, ZHOU H Y, et al Color alignment for relative color constancy via non-standard references[J]. IEEE Transactions on Image Processing, 2022, 31: 6591- 6604
doi: 10.1109/TIP.2022.3214107
|
|
|
[17] |
BARBERO-ÁLVAREZ M A, MENÉNDEZ J M, RODRIGO J A An adaptive colour calibration for crowdsourced images in heritage preservation science[J]. IEEE Access, 2020, 8: 185093- 185111
doi: 10.1109/ACCESS.2020.3017390
|
|
|
[18] |
FANG F, GONG H, MACKIEWICZ M, et al. Colour correction toolbox [C]// Proceedings of 13th AIC Congress . Jeju: Korea Society of Color Studies, 2017: 13–18.
|
|
|
[19] |
ZHAO S, LIU L, FENG Z, et al Colorimetric characterization of color imaging system based on kernel partial least squares[J]. Sensors, 2023, 23 (12): 5706
doi: 10.3390/s23125706
|
|
|
[20] |
GONG R, WANG Q, SHAO X P, et al A color calibration method between different digital cameras[J]. Optik, 2016, 127 (6): 3281- 3285
doi: 10.1016/j.ijleo.2015.12.003
|
|
|
[21] |
NGUYEN H M R, PRASAD D K, BROWN M S. Raw-to-raw: mapping between image sensor color responses [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 3398–3405.
|
|
|
[22] |
AFIFI M, ABUOLAIM A. Semi-supervised raw-to-raw mapping [EB/OL]. (2021-09-06)[2023-12-20]. https://arxiv.org/abs/2106.13883.
|
|
|
[23] |
KARAIMER H C, BROWN M S. Improving color reproduction accuracy on cameras [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 6440–6449.
|
|
|
[24] |
ROBERTSON A R Computation of correlated color temperature and distribution temperature[J]. Journal of the Optical Society of America, 1968, 58 (11): 1528- 1535
doi: 10.1364/JOSA.58.001528
|
|
|
[25] |
BAXTER D, ROYER M, SMET K Modifications of the Robertson method for calculating correlated color temperature to improve accuracy and speed[J]. Leukos, 2024, 20 (1): 55- 66
doi: 10.1080/15502724.2023.2166060
|
|
|
[26] |
ZHANG F Z, XU H S, WANG Z H Spectral design methods for multi-channel LED light sources based on differential evolution[J]. Applied optics, 2016, 55 (28): 7771- 7781
doi: 10.1364/AO.55.007771
|
|
|
[27] |
ROBERTSON A R The CIE 1976 color-difference formulae[J]. Color Research and Application, 1977, 2 (1): 7- 11
doi: 10.1002/j.1520-6378.1977.tb00104.x
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|