Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (9): 1821-1827    DOI: 10.3785/j.issn.1008-973X.2018.09.024
Mechanical and Energy Engineering     
Experimental study on ethanol spray combustion characteristics under oxy-fuel conditions
ZHOU Hao, LI Ning, LI Yuan, ZHAO Meng-hao, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(4090KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The combustion characteristics of ethanol spray under oxy-fuel conditions were investigated in the spray combustion test rig conducted using a McKenna flat flame burner. The flame feature parameters and CH* free radical distribution feature parameters were extracted based on image processing technology. The flame height, flame area and flame average brightness were proposed to characterize the flame features. The study focused on the effect of O2 concentration, CO2 concentration and ethanol/N2 mass flow rate ratio on spray flame and CH* free radical distribution characteristics. Results show that, in the O2 concentration range of 21% to 55%, the flame height and the flame area both decrease with the increase of O2 concentration on while the flame average brightness shows the opposite tendency. Higher O2 concentration leads to smaller reaction distribution region and higher combustion intensity according to the CH* radical distribution characteristics. The effect of CO2 concentration on flame size and flame average brightness is opposite to that of O2 concentration, and the effect of CO2 concentration on flame average brightness is more remarkable than that on flame size. In addition, the increasing trends of flame size and combustion intensity are observed with increasing ethanol/N2 mass flow rate ratio.



Received: 17 July 2017      Published: 20 September 2018
CLC:  TK16  
Cite this article:

ZHOU Hao, LI Ning, LI Yuan, ZHAO Meng-hao, CEN Ke-fa. Experimental study on ethanol spray combustion characteristics under oxy-fuel conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1821-1827.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.09.024     OR     http://www.zjujournals.com/eng/Y2018/V52/I9/1821


富氧条件下乙醇喷雾燃烧特性的实验研究

利用McKenna型平面火焰燃烧器搭建乙醇喷雾燃烧实验台架,研究富氧条件下乙醇喷雾的燃烧特性.通过数字图像处理技术提取喷雾火焰特征参数和CH*自由基分布特征参数.其中,火焰特征参数包括火焰面积、火焰高度、火焰平均亮度.分析伴流气体O2浓度、伴流气体CO2浓度、乙醇与雾化N2质量流量比对喷雾火焰特性及CH*自由基分布特性的影响.研究表明,在O2浓度为21%~55%时,随着O2浓度的增加,火焰高度和火焰面积均呈降低趋势,而火焰平均亮度呈升高趋势.通过对CH*自由基分布特性的分析发现,O2浓度越高,燃烧反应区域的分布范围越小,反应强度越大.CO2浓度对喷雾火焰尺寸与火焰平均亮度的影响与O2浓度的影响相反,并且CO2浓度对喷雾火焰平均亮度的影响明显大于其对喷雾火焰尺寸的影响.随着乙醇与雾化N2质量流量比的增加,火焰尺寸及燃烧反应强度均呈显著升高趋势.

[1] 国家发展和改革委员会. 可再生能源中长期发展规划[J]. 可再生能源, 2007, 25(6):1-5 National Development and Reform Commission. Medium-and-long term renewable energy development plan[J]. Renewable Energy, 2007, 25(6):1-5
[2] 曹建明. 喷雾学[M]. 北京:机械工业出版社, 2005:181-188.
[3] CIEUTAT D, SANCHEZ-MOLINERO I, TSIAVA R, et al. The oxy-combustion burner development for the CO2 pilot at Lacq[J]. Energy Procedia, 2009, 1(1):519-526.
[4] TOFTEGAARD M B, BRIX J, JENSEN P A, et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy & Combustion Science, 2010, 36(5):581-625.
[5] 游卓, 王智化, 周志军, 等. 1000 MW燃煤锅炉富氧燃烧改造及NOx排放的数值模拟[J]. 浙江大学学报:工学版, 2014, 48(11):2080-2086 YOU Zhuo, WANG Zhi-hua, ZHOU Zhi-jun, et al. Numerical simulation of NOx emission from a 1000 MW boiler retrofitted to oxy-fuel combustion[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(11):2080-2086
[6] CHEN L, YONG S Z, GHONIEM A F. Oxy-fuel combustion of pulverized coal:characterization, fundamentals, stabilization and CFD modeling[J]. Progress in Energy and Combustion Science, 2012, 38:156-214.
[7] KÖSER J, BECKER L G, VOROBIEV N, et al. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF[J]. Applied Physics B, 2015, 121(4):459-464.
[8] CLÉON G, HONORÉ D, LACOUR C, et al. Experimental investigation of structure and stabilization of spray oxyfuel flames diluted by carbon dioxide[J]. Proceedings of the Combustion Institute, 2014, 35(3):3565-3572.
[9] KHATAMI R, STIVERS C, JOSHI K. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres[J]. Combustion & Flame, 2012, 159(3):1253-1271.
[10] RIAZA J, KHATAMI R, LEVENDIS Y A, et al. Combustion of single biomass particles in air and in oxy-fuel conditions[J]. Biomass & Bioenergy, 2014, 64(6):162-174.
[11] SHAN F, LIN Q, ZHOU K, et al. An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel[J]. Fuel, 2017, 188:277-284.
[12] HJÄRTSTAM S, ANDERSSON K, JOHNSSON F, et al. Combustion characteristics of lignite-fired oxy-fuel flames[J]. Fuel, 2009, 88(11):2216-2224.
[13] 卜昌盛, 庄亚明, 刘道银, 等. 单颗粒流化床富氧燃烧特性研究[J]. 工程热物理学报, 2015(5):1143-1147 BU Chang-sheng, ZHUANG Ya-ming, LIU Dao-yang, et al. Fluidized bed combustion of a single coal particle in oxy-fuel environment[J]. Journal of Engineering Thermophysics, 2015(5):1143-1147
[14] ANDERSSON K, JOHANSSON R, JOHANSSON F, et al. Radiation intensity of propane-fired oxy-fuel flames:implications for soot formation[J]. Energy & Fuels, 2008, 22(3):1535-1541.
[15] AMATO A, HUDAK B, D'SOUZA P, et al. Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames[J]. Proceedings of the Combustion Institute, 2011, 33(2):3399-3405.
[16] HEIL P, TOPOROV D, FÖRSTER M, et al. Experimental investigation on the effect of O2, and CO2, on burning rates during oxyfuel combustion of methane[J]. Proceedings of the Combustion Institute, 2011, 33(2):3407-3413.
[17] ZHU D L, EGOLFOPOULOS F N, LAW C K. Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature[J]. Symposium on Combustion, 1989, 22(1):1537-1545.
[18] TAN Y, DOUGLAS M A, THAMBIMUTHU K V. CO2 capture using oxygen enhanced combustion strategies for natural gas power plants[J]. Fuel, 2002, 81(8):1007-1016.
[19] ANDERSSON K, JOHNSSON F. Flame and radiation characteristics of gas-fired O2/CO2, combustion[J]. Fuel, 2007, 86(5/6):656-668.
[20] GAN Y, LUO Z, CHENG Y, et al. The electro-spraying characteristics of ethanol for application in a small-scale combustor under combined electric field[J]. Applied Thermal Engineering, 2015, 87:595-604.
[21] GAN Y, TONG Y, JU Y, et al. Experimental study on electro-spraying and combustion characteristics in meso-scale combustors[J]. Energy Conversion and Management, 2017, 131:10-17.
[22] GAN Y, CHEN X, TONG Y, et al. Thermal performance of a meso-scale combustor with electrospray technique using liquid ethanol as fuel[J]. Applied Thermal Engineering, 2018, 128:274-281.
[23] QIU T, YAN Y, LU G. A new edge detection algorithm for flame image processing[C]//Instrumentation and Measurement Technology Conference. Graz:IEEE, 2011:1-4.
[24] QIU T, YAN Y, LU G. An autoadaptive edge-detection algorithm for flame and fire image processing[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5):1486-1493.

[1] DUAN Yi, CHENG Le-ming, WU Xue-song, QIU Kun-zan, LUO Zhong-yang. Experimental study on premixed combustion in two-layer porous media with embedded heat exchangers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1626-1632.
[2] TUN Hua-Cheng, WANG Fu, PU Shi-Liang, PU Xin-Guo, YUAN Tian-Fu, CHEN Ling-Gong, CEN Ge-Fa. Particle identification and location measurement in digital
inline holography
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 765-770.
[3] MAO Yan-Yan, MA Ceng-Yi, TU Liang, et al. Conversion of bromine during the pyrolysis of waste printed circuit boards[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 937-941.