When the image enhancement method LLNet (the low-light net) was applied to three-channel images, there're a lot of redundant parameters. To solve this problem, a framework called CAENet (convolutional auto-encoder network) was proposed. Firstly, CAENet combined a low light processing module with a network training module. Secondly, in the encoding and decoding stages, CAENet used a convolutional network to replace the traditional fully connected network. The experimental results show that connecting low-light processing modules with network training can effectively save time costs. At the same time, the use of convolutional networks can reduce network parameters, making network training more efficient, and obtain better low-dimensional representation of images. The experimental results on the Corel5k dataset show that CAENet can effectively improve the image light perception and color perception while reducing network parameters. The experimental results on high-resolution datasets show that CAENet can preserve details for image details without distortion. In addition, for the noisy low-light image, CAENet can enhance the image while achieving the denoising effect, which proves that CAENet has strong robustness.
Fig.3Schematic diagram of convolutional auto-encoder network (CAENet)
Fig.4Image enhancement schematic diagram under manifold learning method
Fig.5Diagram of low light processing stage of LLNet
Fig.6Diagram of full connection of traditional autoencoder
Fig.7Diagram of convolutional process of three-channel image
Fig.8Diagram of convolutional coding and deconvolutional decoding
Fig.9Process of CAENet training
Fig.10Process of change in image dimensions
Fig.11Flow chart of CAENet pseudo code
Fig.12Image feature extraction step by step using CAENet algorithm
Fig.13Effect comparison of different algorithms on Corel5k dataset
Fig.14Original image and low light image in detail enhancement test
Fig.15Comparison of enhancement effects of different algorithms on rock detail in rock low light images
Fig.16Comparison of enhancement effects of different algorithms on reflection of water surface in low-light images of lakes
Fig.17Comparison of enhancement effects of different algorithms on detail of doors and windows in low-light images of buildings
SSIM
HE
CLAHE
MSRCR
AMSRCR
MSRCP
SRIE
LIME
CAENet
岩石细节图像
0.412 4
0.659 6
0.546 8
0.398 9
0.370 7
0.734 5
0.545 1
0.875 9
湖面细节图像
0.804 3
0.689 2
0.701 3
0.725 6
0.600 8
0.775 3
0.700 0
0.827 8
建筑细节图像
0.703 9
0.758 5
0.622 3
0.633 8
0.555 1
0.645 6
0.694 3
0.835 8
Tab.1Comparison of structural similarity index between different image enhancement algorithms and CAENet algorithm
NIQE
HE
CLAHE
MSRCR
AMSRCR
MSRCP
SRIE
LIME
CAENet
岩石细节图像
7.900 6
8.459 4
8.163 6
7.825 8
7.179 6
8.970 7
8.259 4
7.428 4
湖面细节图像
4.687 2
5.135 0
5.317 0
4.610 2
4.665 8
4.151 3
5.714 1
4.526 7
建筑细节图像
5.086 8
5.061 9
5.357 1
5.603 4
5.186 1
4.827 3
5.681 6
3.864 8
Tab.2Comparison of natural image quality evaluator between different image enhancement algorithms and CAENet algorithm
Fig.18Low light noisy images
Fig.19Effect of different algorithms on Gaussian noise
Fig.20Effect of different algorithms on salt and pepper noise
Fig.21Effect of different algorithms on speckle noise
Fig.22Effect of different algorithms on poisson noise
Fig.23Comparison of evaluation indexes by different image enhancement algorithms
[1]
GUO X, LI Y, LING H LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26 (2): 982- 993
doi: 10.1109/TIP.2016.2639450
[2]
吕永标, 赵建伟, 曹飞龙 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30 (2): 97- 105 LV Yong-biao, ZHAO Jian-wei, CAO Fei-long Image denoising algorithm based on composite convolution neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (2): 97- 105
[3]
RIVERA A R, RYU B, CHAE O Content-aware dark image enhancement through channel division[J]. IEEE Transactions on Image Processing, 2012, 21 (9): 3967- 3980
doi: 10.1109/TIP.2012.2198667
[4]
SINGH K, KAPOOR R image enhancement using exposure based sub image histogram equalization[J]. Pattern Recognition Letters, 2014, 36: 10- 14
doi: 10.1016/j.patrec.2013.08.024
[5]
REZA A M Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38 (1): 35- 44
doi: 10.1023/B:VLSI.0000028532.53893.82
[6]
方帅, 杨静荣, 曹洋, 等 图像引导滤波的局部多尺度Retinex算法[J]. 中国图象图形学报, 2012, 17 (7): 748- 755 FANG Shuai, YANG Jing-rong, CAO Yang, et al A local multiscale Retinex algorithm for image guided filtering[J]. Journal of Image and Graphics, 2012, 17 (7): 748- 755
[7]
JOBSON D J, RAHMAN Z, WOODELL G A Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6 (3): 451- 462
doi: 10.1109/83.557356
[8]
汪荣贵, 张新彤, 张璇, 等 基于Zernike矩的新型Retinex图像增强方法研究[J]. 中国图象图形学报, 2011, 16 (3): 310- 315 WANG Rong-giui, ZHANG Xin-tong, ZHANG Xuan, et al Research on the new Retinex image enhancment method based on zernike moment[J]. Journal of Image and Graphics, 2011, 16 (3): 310- 315
[9]
WANG J, LU K, XUE J, et al Single image dehazing based on the physical model and MSRCR algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, PP (99): 1- 1
[10]
PARTHASARATHY S, SANKARAN P. An automated multi scale retinex with color restoration for image enhancement [C] // IEEE 2012 National Conference on Communications (NCC). Kharagpur: IEEE, 2012: 1-5.
[11]
PETRO A B, SBERT C, MOREL J M Multiscale Retinex[J]. Image Processing on Line, 2014, 71- 88
[12]
FU X, ZENG D, HUANG Y, et al. A weighted variational model for simultaneous reflectance and illumination estimation [C] // Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA: IEEE, 2016.
[13]
黄立威, 江碧涛, 吕守业, 等 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 1- 29 HUANG Li-wei, JIANG Bi-tao, LV Shou-ye, et al Review of the recommendation system based on deep learning[J]. Chinese Journal of Computers, 2018, 1- 29
doi: 10.11897/SP.J.1016.2018.00001
[14]
SHEN L, YUE Z, FENG F, et al. Msr-net: low-light image enhancement using deep convolutional network [J]. ArXiv Preprint. ArXiv: 1711. 02488, 2017.
[15]
LI C, GUO J, PORIKLI F, et al LightenNet: a convolutional neural network for weakly illuminated image enhancement[J]. Pattern Recognition Letters, 2018, 104: 15- 22
doi: 10.1016/j.patrec.2018.01.010
[16]
王万良. 人工智能及其应用: 第3版[M]. 北京: 高等教育出版社, 2015: 319.
[17]
LORE K G, AKINTAYO A, SARKAR S LLNet: A deep autoencoder approach to natural low-Light image enhancement[J]. Pattern Recognition, 2017, 61: 650- 662
doi: 10.1016/j.patcog.2016.06.008
[18]
黄健航, 雷迎科 基于边际Fisher深度自编码器的电台指纹特征提取[J]. 模式识别与人工智能, 2017, 30 (11): 1030- 1038 HUANG Jian-hang, LEI Ying-ke Radio fingerprint feature extraction based on marginal fisher depth autoencoder[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (11): 1030- 1038
[19]
VINCENT P, LAROCHELLE H, BRNGIO Y, et al. Extracting and composing robust features with denoising autoencoders [C] // Proceedings of the 25th International Conference on Machine Learning (ICML2008). Helsinki: ACM, 2008: 1096-1103.
[20]
MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C] // International Conference on Artificial Neural Networks (ICANN). Springer, Berlin, Heidelberg: 2011: 52-59.
[21]
袁非牛, 章琳, 史劲亭,等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 205-232. YUAN Fei-niu, ZHANG Lin, SHI Jin-ting,et al.Self-encoding neural network theory and application review [J]. Chinese Journal of Computers, 2019, 42(1): 205-232.
[22]
VINCENT P, LAROCHELLE H, LAJOIE I, et al Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408
[23]
丁毅, 李玉惠, 李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J]. 计算机技术与发展, 2016, 26(6): 37–39+45. DING Yi, LI Yu-hui, LI Bo. Gamma correction method based on features of different brightness regions of images[J]. Computer Technology and Development, 2016, 26(6): 37-39.
[24]
张菲菲, 谢伟, 石强, 等 人眼视觉感知驱动的梯度域低照度图像对比度增强[J]. 计算机辅助设计与图形学学报, 2014, 26 (11): 1981- 1988 ZHANG Fei-fei, XIE Wei, SHI Qiang, et al Contrast enhancement of gradient domain low illumination image driven by human visual perception[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26 (11): 1981- 1988
[25]
张林, 程华, 房一泉 基于卷积神经网络的链接表示及预测方法[J]. 浙江大学学报: 工学版, 2018, 52 (3): 552- 559 ZHANG Lin, CHENG Hua, FANG Yi-quan Link representation and prediction method based on convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 552- 559
[26]
GU J, WANG Z, KUEN J, et al Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354- 377
doi: 10.1016/j.patcog.2017.10.013
[27]
ZEILER M D, KRISHNAN D, TATLOR G W, et al. Deconvolutional networks [C] // Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2010: 2528-2535.
[28]
袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming, et al A vehicle identification method based on deep convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
[29]
LOZA A, BULL D R, HILL P R, et al Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients[J]. Digital Signal Processing, 2013, 23 (6): 1856- 1866
doi: 10.1016/j.dsp.2013.06.002
[30]
YE X, WANG L, XING H, et al. Denoising hybrid noises in image with stacked autoencoder [C] // Information and Automation (ICIA), Lijiang: IEEE, 2015: 2720-2724.