Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2128-2136    DOI: 10.3785/j.issn.1008-973X.2024.10.017
    
Wave absorption and mechanical properties of fiber-modified electromagnetic wave absorbing aggregate concrete
Yuhao ZHU(),Chaoshan YANG,Huiguo CHEN*(),Rui MU,Chao ZENG,Junru REN,Yixin LEI
Army Logistics Academy, Chongqing 401331, China
Download: HTML     PDF(1656KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems such as weak electromagnetic protection ability of ordinary concrete, insufficient mechanical properties and poor durability of traditional cement-based wave absorbing materials, a new concrete design method was proposed by combining electromagnetic wave absorbing ceramsite and functional fiber components. Carbon fiber (CF), basalt fiber (BF) and polypropylene fiber (PF) were used to toughen and optimize the electromagnetic parameters of the concrete. The electromagnetic wave absorption and the mechanical properties such as compressive strength, splitting tensile strength, flexural strength and frost resistance of electromagnetic wave absorbing aggregate concrete under different fiber types and volume contents were studied through experiments. Experimental results showed that the wave absorption of electromagnetic wave absorbing aggregate concrete was improved by adding these three fibers, especially in the higher frequency Ku band (12?18 GHz), where the bandwidth broadened greatly when the reflectivity is less than ?7 dB, and the peak reflectivity decreased significantly. The compressive and splitting tensile strength of the electromagnetic wave absorbing aggregate concrete was increased distinctly by BF and PF, BF improved the early mechanical strength greatly, and PF optimized the mechanical strength at every age. All three fibers increased the flexural strength of electromagnetic wave absorbing aggregate concrete by more than 50% with the base group, and the frost resistance of the concrete was optimized by the fibers also. After 150 freeze-thaw cycles, the specimens were reduced by more than 50% compared with the base group, and the relative dynamic elastic moduli were increased by 8%?24%.



Key wordsfiber-modified      electromagnetic wave absorbing aggregate concrete      wave absorption      mechanical property      freeze-thaw cycle     
Received: 11 August 2023      Published: 27 September 2024
CLC:  TU 599  
Fund:  军队后勤科研计划(BLJ22J030);重庆市研究生科研创新项目(CYS21530).
Corresponding Authors: Huiguo CHEN     E-mail: 444935112@qq.com;chenhg_mail@163.com
Cite this article:

Yuhao ZHU,Chaoshan YANG,Huiguo CHEN,Rui MU,Chao ZENG,Junru REN,Yixin LEI. Wave absorption and mechanical properties of fiber-modified electromagnetic wave absorbing aggregate concrete. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2128-2136.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2128


纤维改性电磁吸波集料混凝土的吸波特性和机械性能

普通混凝土电磁防护能力弱,传统水泥基吸波材料力学性能不足、耐久性差,为此提出电磁吸波陶粒和纤维组分结合的混凝土设计方法. 将碳纤维(CF)、玄武岩纤维(BF)和聚丙烯纤维(PF)作为增韧和改善混凝土电磁参数的材料,在不同纤维种类和体积掺量下,通过实验研究纤维改性电磁吸波集料混凝土的抗压强度、劈裂抗拉强度、抗折强度、抗冻性能等机械性能. 实验结果表明,3种纤维均改善了电磁吸波集料混凝土的吸波特性,特别是在高频率Ku波段(12~18 GHz),当反射率小于?7 dB时,宽度大幅拓宽,反射率峰值下降明显. BF和PF显著提升了电磁吸波集料混凝土的抗压和劈裂抗拉强度,BF对早期强度贡献较大,PF在各龄期持续优化强度. 3种纤维均使电磁吸波集料混凝土抗折强度较基础组提高超过50%,3种纤维均优化了电磁吸波集料混凝土抗冻性能. 试件经历150次冻融循环后,较基础组减少质量损失均超过50%,相对动弹性模量提升了8%~24%.


关键词: 纤维改性,  电磁吸波集料混凝土,  吸波特性,  机械性能,  冻融循环 
Fig.1 Preparation of electromagnetic wave absorbing ceramsite
纤维ρ/(g·cm?3L/mmD/μmσt/MPaE/GPaε/%
CF1.75974900.0230.02.1
BF2.659174100.0100.02.6
PF0.91918556.94.119.0
Tab.1 Physical properties of different fibers
Fig.2 Test specimens for different experiments
粗集料水泥基中复掺吸波剂R/dBBW7/GHz
碎石[7]?6.2~?4.00
10%铁氧体陶粒[3]?9.1~?8.110
30%TiO2陶粒[4]?8.0~?4.03.9
30%TiO2陶粒[4]wB(TiO2)=3%?9.0~?5.84.8
15%铁氧体陶粒[7]?10.0~?4.86.5
15%铁氧体陶粒[7]φB(CF)=0.2%?13.6~?4.66.5
Tab.2 Wave absorbing properties of common electromagnetic wave absorbing aggregate concrete
Fig.3 Reflectivity curves of different electromagnetic wave absorbing aggregate concrete specimens
组别Rm/dBBW7/GHzBW10/GHz
无纤维?10.006.50.50
NBV0.4?14.149.81.70
NPV0.6?20.107.81.45
NCV0.2?13.646.03.10
Tab.3 Comparison of wave absorbing properties of different electromagnetic wave absorbing aggregate concrete specimens
Fig.4 Relative compressive strength of different electromagnetic wave absorbing aggregate concrete specimens
Fig.5 Splitting tensile strength of different electromagnetic wave absorbing aggregate concrete specimens
组别ff/MPa$\overline f_{\mathrm{f}} $/MPa
试件1试件2试件3
无纤维4.604.784.804.73
NCV0.4Tb6.807.007.707.17
NCV0.8Tb7.347.508.157.66
NBV0.4Tb7.727.938.207.95
NBV0.8Tb8.428.559.088.68
NPV0.4Tb6.808.088.388.13
NPV0.8Tb7.348.689.308.83
Tab.4 Flexural strength of different electromagnetic wave absorbing aggregate concrete specimens
Fig.6 Typical failure form of test specimen
Fig.7 Microstructure of electromagnetic wave absorbing aggregate concrete with fiber component
Fig.8 Variation of freezing index of electromagnetic wave absorbing aggregate concrete with freeze-thaw cycles
Fig.9 Appearance morphology of electromagnetic wave absorbing aggregate concrete after 150 freeze-thaw cycles
[1]   张国栋. 基于阻抗匹配原理的水泥基吸波材料制备及性能研究[D]. 济南: 济南大学, 2015.
ZHANG Guodong. Preparation and performance studies of cementitious wave absorbing materials based on impedance matching [D]. Jinan: University of Jinan, 2015.
[2]   何永佳, 肖培浩, 肖静, 等 吸附钡铁氧体的多孔陶粒吸波材料制备及其性能[J]. 材料科学与工程学报, 2017, 35 (6): 861- 865
HE Yongjia, XIAO Peihao, XIAO Jing, et al Preparation and performances of porous electro-magnetic wave absorbing ceramisite coated with barium ferrite[J]. Journal of Materials Science and Engineering, 2017, 35 (6): 861- 865
[3]   HE Y, LI G, LI H, et al Ceramsite containing iron oxide and its use as functional aggregate in microwave absorbing cement-based materials[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2018, 33 (1): 133- 138
doi: 10.1007/s11595-018-1797-9
[4]   何柳, 平兵, 吕林女, 等 复掺纳米TiO2吸波剂和吸波功能集料的电磁吸波混凝土[J]. 功能材料, 2018, 49 (1): 1173- 1177
HE Liu, PING Bing, LYU Linnyu, et al Electromagnetic wave absorbing concrete prepared by combined admixture of nano TiO2 and electromagnetic wave absorbing functional aggregate[J]. Journal of Functional Materials, 2018, 49 (1): 1173- 1177
[5]   ZHANG Z, YANG C, CHEN H, et al The electromagnetic wave absorption performance and mechanical properties of cement-based composite material mixed with functional aggregates with high Fe2O3 and SiC[J]. Journal of Composite and Advanced Materials, 2021, 31 (4): 249- 255
[6]   黄晓寒, 程华, 郑子云, 等 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35 (22): 22027- 22032
HUANG Xiaohan, CHEN Hua, ZHENG Ziyun, et al Research on electromagnetic loss model and property of ferrite-containing ceramsite aggregate[J]. Materials Reports, 2021, 35 (22): 22027- 22032
doi: 10.11896/cldb.21020060
[7]   朱毓豪, 任俊儒, 杨朝山, 等 掺加碳纤维的Fe2O3功能集料电磁防护混凝土[J]. 合成纤维, 2022, 51 (4): 50- 57
ZHU Yuhao, REN Junru, YANG Chaoshan, et al Electromagnetic protective concrete with Fe2O3 functional aggregate mixed with carbon fiber[J]. Synthetic Fiber in China, 2022, 51 (4): 50- 57
doi: 10.3969/j.issn.1001-7054.2022.4.hcxw202204011
[8]   李为民, 许金余 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36 (4): 476- 481
LI Weimin, XU Jinyu Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36 (4): 476- 481
doi: 10.3321/j.issn:0454-5648.2008.04.009
[9]   ADESINA A, DAS S Influence of various parameters on properties of basalt fiber-reinforced cementitious composites[J]. ACI Materials Journal, 2022, 119 (6): 5- 17
[10]   辛明, 王学志, 佟欢 纤维混凝土耐久性能研究综述[J]. 辽宁工业大学学报: 自然科学版, 2020, 40 (1): 36- 39
XIN Ming, WANG Xuezhi, TONG Huan Summary of research on durability of fiber concrete[J]. Journal of Liaoning University of Technology: Natural Science Edition, 2020, 40 (1): 36- 39
[11]   ALI B, RAZA S S, HUSSAIN I, et al Influence of different fibers on mechanical and durability performance of concrete with silica fume[J]. Structural Concrete, 2021, 22 (1): 318- 333
doi: 10.1002/suco.201900422
[12]   XIE S, WANG J, WANG W, et al Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent[J]. Materials Research Express, 2018, 5 (2): 025605
doi: 10.1088/2053-1591/aaae51
[13]   NARAYANAN S, ZHANG Y, ASLANI F Prediction models of shielding effectiveness of carbon fibre reinforced cement-based composites against electromagnetic interference[J]. Sensors, 2023, 23 (4): 2084
doi: 10.3390/s23042084
[14]   刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 第2版. 北京: 化学工业出版社, 2014.
[15]   CHEN J, LIANG X, ZHEN J, et al Modulating dielectric loss of mesoporous carbon fibers with radar cross section reduction performance via computer simulation technology[J]. Inorganic Chemistry Frontiers, 2021, 8 (3): 758- 765
doi: 10.1039/D0QI01237H
[16]   张月芳. 纤维增强水泥基电磁波吸收材料制备及性能[D]. 大连: 大连理工大学, 2018.
ZHANG Yuefang. Preparation and performance of fiber reinforced cement-based electromagnetic wave absorbing materials [D]. Dalin: Dalian University of Technology, 2018.
[17]   DENG G, YANG Y, ZHOU Q, et al. Lightweight and broadband electromagnetic wave absorbing foamed cement-based composites incorporated with hybrid dielectric fibers [J]. Construction and Building Materials , 2022, 327: 126931.
[18]   姚勇, 何跃川, 陈中武 玄武岩纤维及其复合材料的微波介电性能[J]. 玻璃钢/复合材料, 2016, (5): 65- 67
YAO Yong, HE Yuechuan, CHEN Zhongwu The microwave dielectric properties of basalt fibers and CBF-EP composites[J]. Fiber Reinforced Plastics/Composites, 2016, (5): 65- 67
[19]   张月芳, 郝万军, 刘顺华 频率选择表面对PET水泥基材料吸波性能的影响[J]. 建筑材料学报, 2018, 21 (1): 117- 123
ZHANG Yuefang, HAO Wanjun, LIU Shunhua Effect of frequency selective surface on microwave absorbing properties of PET cement-based materials[J]. Journal of Building Materials, 2018, 21 (1): 117- 123
doi: 10.3969/j.issn.1007-9629.2018.01.019
[20]   递春 高性能玄武岩纤维的性能及应用[J]. 上海纺织科技, 2014, 42 (1): 12- 14
DI Chun The property and its application of high performance basalt fiber[J]. Shanghai Textile Science and Technology, 2014, 42 (1): 12- 14
[21]   陆振乾, 杨雅茹, 荀勇 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42 (4): 177- 183
LU Zhenqian, YANG Yaru, XUN Yong Research review of fiber effect on properties of cement-based composite[J]. Journal of Textile Research, 2021, 42 (4): 177- 183
[22]   李德春, 许冲, 崔振东, 等 基于正交试验的纤维混凝土力学性能影响研究[J]. 混凝土, 2022, (6): 29- 32
LI Dechun, XU Chong, CUI Zhendong, et al Influence of fiber reinforced concrete on mechanical properties based on orthogonal test[J]. Concrete, 2022, (6): 29- 32
doi: 10.3969/j.issn.1002-3550.2022.06.006
[23]   WU H, QIN X, HUANG X, et al Engineering, mechanical and dynamic properties of basalt fiber reinforced concrete[J]. Materials, 2023, 16 (2): 623
doi: 10.3390/ma16020623
[24]   王激扬, 马卫强, 胡志华 PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报: 工学版, 2017, 51 (11): 2130- 2135
WANG Jiyang, MA Weiqiang, HU Zhihua Effect of PE fiber content on mechanical behavior of cementitious composite[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (11): 2130- 2135
[1] Hui CHENG,Hongyuan FU,Ling ZENG,Xiaowei YU,Jintao LUO,Jie LIU. Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1912-1922.
[2] Yongchao WANG,Zhengying WEI,Pengfei HE. Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1585-1595.
[3] You-jun XU,Yue-kui PANG,Chao ZHANG,Jia-wang KANG,Zheng-dong HUANG. Shear performance of F-type socket joint in rectangular pipe jacking tunnel[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 957-966.
[4] Jia-jun SHU,Zheng-ding DENG,Bing-ni WU,Hua-dong GUAN,Mao-sen CAO. Stability deterioration model of toppling unstable rock mass under freeze-thaw cycle[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1714-1723.
[5] Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.
[6] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[7] Kang-qiao HUANG,Cheng ZHAO,Wei ZHOU,Xing-hong LIU,Gang MA. Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 62-70.
[8] Lei ZHANG,Hai-jun XU,Teng-an ZOU,Xiao-jun XU,Yu-kang CHANG. Modeling and property analysis of underwater vector propulsion system based on nested Z-shafts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 450-458.
[9] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[10] OU Zu-min, SUN Lu. Flexural fatigue-life reliability of frost-damaged concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1074-1081.
[11] LI Qiang, JIN Xian yu. Effect of stirrup corrosion on bearing capacity of uniaxial compression short column[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1929-1938.
[12] WU Hai-rong, JIN Wei-liang, YAN Yong-dong, XIA Jin. Environmental zonation and life prediction of concrete in
frost environments
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 650-657.