|
|
Computational offloading in D2D-MEC with energy harvesting |
Yaoping ZENG( ),Yueqiang LIU,Saishen GUAN,Weiwei JIANG,Yuting XIA |
School of Communications and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract The task offloading and resource allocation problems within D2D-MEC internet of things, which incorporates social relationships and energy harvesting (EH), were analyzed aiming at the energy consumption and security in mobile edge computing (MEC). An online decision matching and resource allocation (ODMRA) algorithm was proposed based on Lyapunov optimization for D2D communication. Social relationships among users were quantified into a social trust matrix. Energy consumption, packet loss and social trustworthiness were articulated as a long-term stochastic optimization problem. The Lyapunov optimization technique was employed to decompose this into a series of sub-problems, which were then solved individually. A low-complexity strategy selection algorithm was designed by combining submodular optimization and greedy algorithms for the decision-making sub-problems between D2D pairs. Theoretical analysis and simulation results showed that the proposed ODMRA algorithm effectively optimized the offloading scheme, balanced the system service cost and queue length, and outperformed other comparative algorithms in terms of energy consumption and system service cost.
|
Received: 27 April 2023
Published: 26 April 2024
|
|
Fund: 陕西省重点研究开发项目(2024NC-YBXM-206). |
能量收集下的D2D-MEC计算卸载
针对移动边缘计算(MEC) 在能源消耗和安全性方面的问题,研究具有社会关系和能量收集(EH)的D2D-MEC物联网网络中的任务卸载和资源分配问题,提出基于李雅普诺夫优化的D2D在线决策匹配和资源分配(ODMRA)算法. 将用户之间的社会关系量化为社会信任矩阵,将能源消耗、包丢失、社会信任度表述为长期随机优化问题,采用李雅普诺夫优化方法将其分解为一系列子问题后分别求解. 对于D2D间的决策选择子问题,结合子模块优化和贪婪算法设计低复杂度的策略选择算法. 理论分析和仿真结果表明,所提出的ODMRA算法有效地优化了卸载方案,平衡了系统服务成本和队列长度,在能量消耗、系统服务成本方面优于其他对比算法.
关键词:
移动边缘计算,
设备对设备,
能量收集,
李雅普诺夫优化,
子模块优化
|
|
[1] |
LIU Y, PENG M, SHOU G, et al Toward edge intelligence: multiaccess edge computing for 5G and Internet of Things[J]. IEEE Internet of Things Journal, 2020, 7 (8): 6722- 6747
doi: 10.1109/JIOT.2020.3004500
|
|
|
[2] |
韩晓非, 宋青芸, 韩瑞寅, 等 移动边缘计算卸载技术综述[J]. 电讯技术, 2022, 62 (9): 1368- 1376 HAN Xiaofei, SONG Qingyun, HAN Ruiyin, et al Survey on mobile edge computing offloading technology[J]. Telecommunication Engineering, 2022, 62 (9): 1368- 1376
|
|
|
[3] |
韩英斌. 基于博弈论的D2D辅助MEC计算卸载与资源分配联合优化算法研究[D]. 长春: 吉林大学, 2023. HAN Yingbin. Research on D2D assisted MEC computation offloading and resource allocation joint optimization algorithm based on game theory [D]. Changchun: Jilin University, 2023.
|
|
|
[4] |
方韬, 杨旸, 陈佳馨 D2D辅助移动边缘计算下的卸载策略优化[J]. 计算机科学, 2022, 49 (Suppl. 1): 601- 605 FANG Tao, YANG Yang, CHEN Jiaxin Optimization of offloading decisions in D2D-assisted MEC networks[J]. Computer Science, 2022, 49 (Suppl. 1): 601- 605
|
|
|
[5] |
FANG T, YUAN F, AO L, et al Joint task offloading, D2D pairing, and resource allocation in device-enhanced MEC: a potential game approach[J]. IEEE Internet of Things Journal, 2021, 9 (5): 3226- 3237
|
|
|
[6] |
PENG J, QIU H, CAI J, et al D2D-assisted multi-user cooperative partial offloading, transmission scheduling and computation allocating for MEC[J]. IEEE Transactions on Wireless Communications, 2021, 20 (8): 4858- 4873
doi: 10.1109/TWC.2021.3062616
|
|
|
[7] |
GAO Y, TANG W, WU M, et al Dynamic social-aware computation offloading for low-latency communications in IoT[J]. IEEE Internet of Things Journal, 2019, 6 (5): 7864- 7877
doi: 10.1109/JIOT.2019.2909299
|
|
|
[8] |
GAO Y, XIAO Y, WU M, et al Dynamic social-aware peer selection for cooperative relay management with D2D communications[J]. IEEE Transactions on Communications, 2019, 67 (5): 3124- 3139
doi: 10.1109/TCOMM.2019.2894138
|
|
|
[9] |
LI Y, ZHANG Z, WANG H, et al SERS: social-aware energy-efficient relay selection in D2D communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 5331- 5345
doi: 10.1109/TVT.2018.2810162
|
|
|
[10] |
SUN M, XU X, HUANG Y Resource management for computation offloading in D2D-aided wireless powered mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 8 (10): 8005- 8020
|
|
|
[11] |
JIANG C, CAO T, GUAN J Intelligent task offloading and collaborative computation over D2D communication[J]. China Communications, 2021, 18 (3): 251- 263
doi: 10.23919/JCC.2021.03.020
|
|
|
[12] |
LONG H, XU C, ZHENG G, et al Socially-aware energy-efficient task partial offloading in MEC networks with D2D collaboration[J]. IEEE Transactions on Green Communications and Networking, 2022, 6 (3): 1889- 1902
doi: 10.1109/TGCN.2022.3153956
|
|
|
[13] |
SUDEVALAYAM S, KULKARNI P Energy harvesting sensor nodes: survey and implications[J]. IEEE Communications Surveys and Tutorials, 2010, 13 (3): 443- 461
|
|
|
[14] |
HU H, SONG W, WANG Q, et al Energy efficiency and delay tradeoff in a MEC-enabled mobile IoT network[J]. IEEE Internet of Things Journal, 2022, 9 (17): 15942- 15956
doi: 10.1109/JIOT.2022.3153847
|
|
|
[15] |
XU C, GAO C, ZHOU Z, et al Social network-based content delivery in device-to-device underlay cellular networks using matching theory[J]. IEEE Access, 2017, 5: 924- 937
doi: 10.1109/ACCESS.2016.2621010
|
|
|
[16] |
HU H, WANG Q, HU, et al Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting[J]. IEEE Internet of Things Journal, 2021, 8 (24): 17541- 17556
doi: 10.1109/JIOT.2021.3081983
|
|
|
[17] |
DENG Y, CHEN Z, YAO X, et al Parallel offloading in green and sustainable mobile edge computing for delay-constrained IoT system[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (12): 12202- 12214
doi: 10.1109/TVT.2019.2944926
|
|
|
[18] |
ZHANG G, ZHANG W, CAO Y, et al Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (10): 4642- 4655
doi: 10.1109/TII.2018.2843365
|
|
|
[19] |
ZHANG Q, GUI L, HOU F, et al Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN[J]. IEEE Internet of Things Journal, 2020, 7 (4): 3282- 3299
doi: 10.1109/JIOT.2020.2967502
|
|
|
[20] |
FENG J, PEI Q, YU F R, et al Dynamic network slicing and resource allocation in mobile edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (7): 7863- 7878
doi: 10.1109/TVT.2020.2992607
|
|
|
[21] |
NEELY M. Stochastic network optimization with application to communication and queueing systems [M]. San Rafael: Springer Nature, 2022.
|
|
|
[22] |
GRIPPO L, SCIANDRONE M On the convergence of the block nonlinear Gauss–Seidel method under convex constraints[J]. Operations research letters, 2000, 26 (3): 127- 136
doi: 10.1016/S0167-6377(99)00074-7
|
|
|
[23] |
YANG Y, ZHAO S, ZHANG W, et al DEBTS: delay energy balanced task scheduling in homogeneous fog networks[J]. IEEE Internet of Things Journal, 2018, 5 (3): 2094- 2106
doi: 10.1109/JIOT.2018.2823000
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|