Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 790-798    DOI: 10.3785/j.issn.1008-973X.2024.04.014
    
Load scheduling and energy allocation optimization algorithm for intelligent home appliances
Didi LIU1,2(),Wenyu YANG1,Zhixian LIAO2,Quanjing ZHANG3,*(),Cong HU4
1. School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
2. Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, Guangxi Normal University, Guilin 541004, China
3. Education Information Technology Center, China West Normal University, Nanchong 637009, China
4. Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
Download: HTML     PDF(1485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the problem of high energy consumption in household electricity usage and to improve the user revenue from electricity supply and use, an energy scheduling approach was proposed for loads with electrical differences in households. Firstly, the household electrical loads were divided into elastic loads and non-elastic loads based on the transferable attributes. Then, an optimization model for load scheduling of intellectualized electrical apparatus was proposed by jointly considering distributed renewable energy resources and energy storage devices. Based on the Lyapunov optimization theory, an algorithm for time-varying electricity pricing was designed to allocate energy for multiple home appliances. The algorithm fully considered the load response and the scheduling optimization of different intelligent appliances. Theoretical performance analysis demonstrates that the proposed algorithm achieves asymptotic optimality without requiring any priori statistical information of the system. Finally, simulations were conducted to validated the user revenue improvement capability of the proposed algorithm. Compared to the allocation algorithm that did not take into account the actual needs of various home appliances and tolerable delay, the proposed algorithm can increase the user revenue by 11.2%.



Key wordsintelligent appliances      schedule optimization      Lyapunov optimization      energy allocation      demand response     
Received: 14 August 2023      Published: 27 March 2024
CLC:  TM 734  
Fund:  国家自然科学基金资助项目(62061006);广西自动检测技术与仪器重点实验室基金资助项目(YQ23203);广西类脑计算与智能芯片重点实验室基金资助项目(BCIC-23-Z7);青年教师科研资助项目(23kq004).
Corresponding Authors: Quanjing ZHANG     E-mail: ldd866@gxnu.edu.cn;quanjing_zhang@163.com
Cite this article:

Didi LIU,Wenyu YANG,Zhixian LIAO,Quanjing ZHANG,Cong HU. Load scheduling and energy allocation optimization algorithm for intelligent home appliances. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 790-798.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/790


家庭智能电器负荷调度和能量分配优化算法

为了解决家庭用电高额能耗问题和提高用户供用电收益,针对家庭中具有用电差异性的负荷进行能量调度. 根据可转移属性,将家庭用电负荷分为2个类别:弹性负荷和非弹性负荷. 联合分布式可再生能源和储能设备构建智能电器用电负荷调度优化模型,基于李雅普诺夫优化理论提出时变电价下的家庭用户多电器能量分配算法. 所提算法充分考虑了不同智能电器的用电负荷响应及调度优化问题. 理论性能分析证明,所提算法能够在不需要系统的先验统计信息的情况下使优化目标渐近最优. 对所提算法的用户收益提升能力进行仿真验证,结果表明,相较于未考虑各家用智能电器实际需求和可容忍时延的分配算法,所提算法可将用户收益提高11.2%.


关键词: 智能电器,  调度优化,  李雅普诺夫优化,  能量分配,  需求响应 
Fig.1 Schematic diagram of home intelligent electricity management system
Fig.2 Energy flow of home energy management system
Fig.3 Comparison of 100-day cumulative revenue for users with different algorithms
Fig.4 Time delay comparison of different algorithms
Fig.5 Comparison of 100-day revenue for users of different models
Fig.6 Comparison of 100-day average latency for users of different models
Fig.7 Charging and discharging characteristics of energy storage devices
Fig.8 Relationship between energy allocated by different appliances and backlog of queues
Fig.9 Comparison of 100-day cumulative revenue for users under different scenarios
[1]   陈国平, 梁志峰, 董昱 基于能源转型的中国特色电力市场建设的分析与思考[J]. 中国电机工程学报, 2020, 40 (2): 369- 378
CHEN Guoping, LIANG Zhifeng, DONG Yu Analysis and reflection on the marketization construction of electric power with Chinese characteristics based on energy transformation[J]. Proceedings of the CSEE, 2020, 40 (2): 369- 378
[2]   侯媛媛, 曾君, 罗燕, 等 社区微网主动能量管理协同与优化方法研究[J]. 电网技术, 2023, 47 (4): 1548- 1557
HOU Yuanyuan, ZENG Jun, LUO Yan, et al Research on collaborative and optimization methods of active energy management in community microgrid[J]. Power System Technology, 2023, 47 (4): 1548- 1557
[3]   罗金满, 刘丽媛, 刘飘, 等 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50 (1): 167- 173
LUO Jinman, LIU Liyuan, LI Piao, et al An optimal scheduling method for active distribution network considering source network load storage coordination[J]. Power System Protection and Control, 2022, 50 (1): 167- 173
[4]   YE L, ZHANG C, TANG Y, et al Hierarchical model predictive control strategy based on dynamic active power dispatch for wind power cluster integration[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4617- 4629
doi: 10.1109/TPWRS.2019.2914277
[5]   刘岩, 吴以岷, 徐荣敏, 等 含智能负荷和分布式能源接入的配电网调度研究[J]. 电力系统保护与控制, 2018, 46 (20): 116- 123
LIU Yan, WU Yimin, XU Rongmin, et al Research on distribution network scheduling with smart load and distributed energy access[J]. Power System Protection and Control, 2018, 46 (20): 116- 123
doi: 10.7667/PSPC171412
[6]   李艳梅, 任恒君, 张致远, 等 考虑储能系统调度与风电消纳的峰谷分时电价优化模型研究[J]. 电网技术, 2022, 46 (11): 4141- 4149
LI Yanmei, REN Hengjun, ZHANG Zhiyuan, et al Optimization model of peak-valley time-of-use electricity prices considering energy storage system dispatching and wind power consumption[J]. Power System Technology, 2022, 46 (11): 4141- 4149
[7]   代心芸, 陈皓勇, 肖东亮, 等 电力市场环境下工业需求响应技术的应用与研究综述[J]. 电网技术, 2022, 46 (11): 4169- 4185
DAI Xinyun, CHEN Haoyong, XIAO Dongliang, et al Review of applications and researches of industrial demand response technology under electricity market environment[J]. Power System Technology, 2022, 46 (11): 4169- 4185
[8]   张通, 刘理峰, 杨才明, 等 考虑需求响应和风电不确定性的能源系统调度[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1562- 1571
ZHANG Tong, LIU Lifeng, YANG Caiming, et al Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1562- 1571
[9]   沈运帷, 李扬, 高赐威, 等 需求响应在电力辅助服务市场中的应用[J]. 电力系统自动化, 2017, 41 (22): 151- 161
SHEN Yunwei, LI Yang, GAO Ciwei, et al Application of demand response in ancillary service market[J]. Automation of Electric Power Systems, 2017, 41 (22): 151- 161
[10]   杨景旭, 周来, 张勇军, 等 “专变共享”模式下考虑时变电价和转移概率的EV有序充电[J]. 电力自动化设备, 2020, 40 (10): 173- 180
YANG Jingxu, ZHOU Lai, ZHANG Yongjun, et al Ordered charging of EVs considering time-varying electricity price and transition probability under “dedicated transformer sharing” mode[J]. Electric Power Automation Equipment, 2020, 40 (10): 173- 180
[11]   史林军, 史江峰, 杨启航, 等 基于分时电价的家庭智能用电设备的运行优化[J]. 电力系统保护与控制, 2018, 46 (24): 88- 95
SHI Linjun, SHI Jiangfeng, YANG Qihang, et al Optimal scheduling of intelligent household electrical appliances based on time-of-use power price[J]. Power System Protection and Control, 2018, 46 (24): 88- 95
doi: 10.7667/PSPC171763
[12]   张彦, 张涛, 刘亚杰, 等 基于模型预测控制的家庭能源局域网最优能量管理研究[J]. 中国电机工程学报, 2015, 35 (14): 3656- 3666
ZHANG Yan, ZHANG Tao, LIU Yajie, et al Optimal energy management of a residential local energy network based on model predictive control[J]. Proceedings of the CSEE, 2015, 35 (14): 3656- 3666
[13]   赵冬梅, 宋原, 王云龙, 等 考虑柔性负荷响应不确定性的多时间尺度协调调度模型[J]. 电力系统自动化, 2019, 43 (22): 21- 30
ZHAO Dongmei, SONG Yuan, WANG Yunlong, et al Coordinated scheduling model with multiple time scales considering response uncertainty of flexible load[J]. Automation of Electric Power Systems, 2019, 43 (22): 21- 30
[14]   EL RAHI G, ETESAMI S R, SAAD W, et al Managing price uncertainty in prosumer-centric energy trading: a prospect-theoretic Stackelberg game approach[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 702- 713
[15]   贾雁冰, 杨阳方, 刘继春, 等 售用双方协同优化的家庭柔性负荷管理策略[J]. 电网技术, 2019, 43 (4): 1430- 1438
JIA Yanbing, YANG Yangfang, LIU Jichun, et al Management strategy for domestic flexible load to achieve retailer-user coordinated optimization[J]. Power System Technology, 2019, 43 (4): 1430- 1438
[16]   DENG H, YU M, ZHANG S, et al. Optimal design of household electricity consumption with distributed photovoltaic system based on user demand response [C]// 2022 12th International Conference on Power and Energy Systems (ICPES) . Guangzhou: IEEE, 2022: 805–809.
[17]   徐弘升, 陆继翔, 杨志宏, 等 基于深度强化学习的激励型需求响应决策优化模型[J]. 电力系统自动化, 2021, 45 (14): 97- 103
XU Hongsheng, LU Jixiang, YANG Zhihong, et al Decision optimization model of incentive demand response based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (14): 97- 103
[18]   陆俊, 彭文昊, 朱炎平, 等 基于粒子校正优化的智能小区需求响应调度策略[J]. 电网技术, 2017, 41 (7): 2370- 2377
LU Jun, PENG Wenhao, ZHU Yanping, et al A scheduling strategy based on particle correction for intelligent power demand response[J]. Power System Technology, 2017, 41 (7): 2370- 2377
[19]   NEELY M J, SABER TEHRANI A, DIMAKIS A G. Efficient algorithms for renewable energy allocation to delay tolerant consumers [C]// 2010 First IEEE International Conference on Smart Grid Communications . Gaithersburg: IEEE, 2010: 549–554.
[20]   GUO Y, PAN M, FANG Y Optimal power management of residential customers in the smart grid[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23 (9): 1593- 1606
doi: 10.1109/TPDS.2012.25
[21]   刘迪迪, 马丽纳, 孙浩天, 等 智能电网时变电价下基站的动态能量管理[J]. 北京邮电大学学报, 2019, 42 (5): 54- 61
LIU Didi, MA Lina, SUN Haotian, et al Research on dynamic energy management for the base station supplied by smart grid with time-varying price[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42 (5): 54- 61
[22]   刘迪迪, 孙浩天, 肖佳文, 等 智能电网中终端用户的双向能量交易算法[J]. 西安电子科技大学学报, 2021, 48 (3): 131- 137
LIU Didi, SUN Haotian, XIAO Jiawen, et al Two-way energy trading algorithms for the end-user in the smart grid[J]. Journal of Xidian University, 2021, 48 (3): 131- 137
[23]   QIAO Z, YANG B, XU Q, et al. Energy trading between microgrids towards individual cost and social welfare optimization [C]// 2017 13th IEEE Conference on Automation Science and Engineering (CASE) . Xi'an: IEEE, 2018: 1243–1248.
[24]   范斌涛, 杨倬, 沈子奇, 等 基于李雅普诺夫优化框架的风光储独立微网实时优化调度策略[J]. 可再生能源, 2023, 41 (4): 555- 561
FAN Bintao, YANG Zhuo, SHEN Ziqi, et al Real-time dispatch of renewable-storage integrated independent microgrid based on Lyapunov optimization framework[J]. Renewable Energy Resources, 2023, 41 (4): 555- 561
[1] Qing-long MENG,Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG. HVAC demand response strategy experiment and simulation considering active energy storage[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1175-1184.
[2] Fu-lin ZHAO,Tong ZHANG,Guang MA,Zhe CHEN,Chuang-xin GUO,Jin-jiang ZHANG. Study on flexible operation region of power system considering source and load fluctuation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 935-947.
[3] Tong ZHANG,Li-feng LIU,Cai-ming YANG,Yi-ning ZHANG,Chuang-xin GUO,Dong XIE. Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1562-1571.
[4] WANG Ren chao, DENG Jian, CAO Ting ting. Selection of construction project schedule alternatives based on improved VIKOR method[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2025-2030.
[5] LOU Wen-tao, ZHANG Zhao-yang, CHEN Shao-lei, YIN Rui. Energy allocation in rateless coded cognitive radio system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1816-1821.