Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1775-1784    DOI: 10.3785/j.issn.1008-973X.2023.09.009
    
Mechanism of rolling contact fatigue occurring on rails of heavy haul railway transition line
Yang LI1(),Bin-heng BAI2,Ri-ge-ji-le MO2,Xin ZHAO1,*(),Ze-feng WEN1,Zhuo WANG3
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2. Manufacturing Department, Mongolia Baotou Steel Union Limited Company, Baotou 014010, China
3. Maintenance Department, China Railway Hohhot Group Limited Company, Hohhot 010000, China
Download: HTML     PDF(2169KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A field investigation was conducted on a heavy haul railway line with axle load of 25 t. There was a significant difference in rail rolling contact fatigue (RCF) on the entering and leaving transition sections on curves with radius of 580?1000 m, and particularly, the RCF on the leaving transition section was severer. A dynamic model of heavy haul train including two locomotives and 108 wagons was established using Simpack on the basis of on-site wheel/rail observation and train parameter investigation, and a damage function model was applied to numerically analyze the mechanism of the rail RCF difference on the entering and leaving transition sections. Result shows that the RCF difference is dominated by the curving behavior of wagons, and the contribution of the leading wheelsets is the most significant, while the contribution of the trailing wheelsets and locomotives is relatively slight. More detailed analysis shows that the RCF is not significant under the condition of standard wheel/rail profile matching. However, after the wagon wheels wear, the wheel/rail creepage and creep force on the leaving transition section are higher than those on the entering transition section, which is the primary reason for the RCF. And the effect of rail worn profile is not significant for the RCF. The frequent interaction between the worn wagons leading wheelsets and the worn rail on the sharp radius curve is the main reason for the rail RCF difference on the entering and leaving transition sections.



Key wordsheavy haul railway      rail      rolling contact fatigue (RCF)      transition curve      train dynamics      damage function     
Received: 29 October 2022      Published: 16 October 2023
CLC:  U 213.4  
Fund:  国家自然科学基金资助项目(U21A20167);四川省国际科技创新合作项目(2021YFH0006);牵引动力国家重点实验室自主课题(2022TPL_T06)
Corresponding Authors: Xin ZHAO     E-mail: liyang5611@163.com;xinzhao@swjtu.edu.cn
Cite this article:

Yang LI,Bin-heng BAI,Ri-ge-ji-le MO,Xin ZHAO,Ze-feng WEN,Zhuo WANG. Mechanism of rolling contact fatigue occurring on rails of heavy haul railway transition line. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1775-1784.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.009     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1775


重载曲线缓和段钢轨滚动接触疲劳机理

某轴重25 t运煤重载铁路半径580~1000 m的曲线入/出缓和段钢轨存在明显的滚动接触疲劳(RCF)差异现象,出缓和段的疲劳更严重. 在轮轨现场观测和列车参数调研的基础上,使用Simpack建立包含2节内重联机车与108节货车的重载列车动力学模型,利用损伤函数模型数值分析入/出缓和段RCF差异的机理和主要影响因素. 结果表明,RCF差异由货车曲线通过行为主导,货车中转向架导向轮对的贡献最显著,非导向轮对与机车的贡献相对轻微. 在标准轮轨廓形匹配工况下,RCF差异不显著;待货车车轮磨耗失形后,钢轨磨耗失形对RCF差异的影响并不显著,轮轨蠕滑率/力在出缓和段比在入缓和段高是导致RCF差异的根本原因. 磨耗后的货车转向架导向轮对与磨耗轨在小半径曲线上频繁地相互作用,是导致入/出缓和段钢轨RCF差异的主要原因.


关键词: 重载铁路,  钢轨,  滚动接触疲劳(RCF),  缓和曲线,  列车动力学,  损伤函数 
Fig.1 Rail surface condition at 62 mm superelevation in entering/leaving transition section of R=580 m curve on 25 t axle load heavy haul railway
Fig.2 Schematic diagram of entering/leaving transition section and circular section for R=580 m curve
Fig.3 Peak crack depth of rail surface measured at different superelevations in entering/leaving transition section of R=580 m curve
Fig.4 Rail surface on same heavy haul line with different radius curves entering/leaving transition section
Fig.5 Measured rail profiles in curves with different radii
Fig.6 Random measurements of locos and wagons running on investigated line
Fig.7 Measured track irregularity of entering/leaving transition section and circular curve section of R=580 m curve
Fig.8 Schematic diagram of train dynamics model
车型 m/kg 侧滚 点头 摇头 纵向 横向 垂向
轮对 构架 车体 J1, J2, J3/
(kg·m2)
J1, J2, J3/
(kg·m2)
J1, J2, J3/
(kg·m2)
E1, E2/
(MN·m?1)
E1, E2/
(MN·m?1)
E1, E2/
(MN·m?1)
机车 3 562 4 698 76 356 2 064, 2 260, 119 353 573, 8 480, 2 971 813 2 064, 10 360, 2 968 047 36.000, 0.226 4.830, 0.226 2.910, 0.557
货车 1 171 497 93 328 600, 20, 216 300 70, 184, 996 300 600, 169, 983 900 11.000, 3.127 13.000, 3.127 160.000, 4.235
Tab.1 Main parameters used for establishing dynamic models of locos and wagons
R/m h2/mm p/‰ L1/m L2/m v/(km·h?1)
580
800
1 000
75
80
50
?6.5
?2.5
?4.6
100
190
150
586.09
683.02
722.31
67
67
67
Tab.2 Main parameters of simulation curves
Fig.9 Schematic diagram of damage function of two rail steel materials
材料 FA/N ε1/10?7 FB/N ε2/(10?7 $N_{\rm{f}}^{-1}$) H/HB
BS11 15 2.0 65 ?2.91 240
U75V淬 23 2.0 100 ?2.91 369
Tab.3 Main parameters of damage function of two rail steel materials
Fig.10 Prediction of rolling contact fatigue value of R=580 m curve in high and low rails
Fig.11 Longitudinal distribution of rolling contact fatigue in high and low rails of R=580 m curve entering/leaving transition section predicted by damage function
Fig.12 Prediction of rolling contact fatigue along longitudinal direction when only locos and wagons pass through R=580 m curve entering/leaving transition section
Fig.13 Longitudinal distribution of high-rail rolling contact fatigue, when wagon leading and non-leading wheelsets pass through entering/leaving transition section of R=580 m curve
Fig.14 Longitudinal distribution of high rail wear number, when leading and non-leading wheelsets of wagon front bogie pass through entering/leaving transition section of R=580 m curve
Fig.15 Longitudinal distribution of absolute value of creep force and creep rate of high rail, when front bogie leading wheelsets of wagon passes through R=580 m entering/leaving transition section
Fig.16 Difference of rolling contact fatigue of entering/leaving transition section of high rail of R=580 m curve under different wheel-rail profile matching conditions
Fig.17 Rolling contact fatigue predictions of R=800 m and R=1000 m curved high rail
Fig.18 Rolling contact fatigue differences of high rails for different superelevations for entering/leaving transition section of each radius curve
[1]   金学松, 张继业, 温泽峰, 等 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002, 24 (2): 250- 257
JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24 (2): 250- 257
doi: 10.16579/j.issn.1001.9669.2002.02.023
[2]   邓勇, 杨滨, 袁俊 U75V 60 kg/m热处理钢轨横向断裂原因分析[J]. 钢铁钒钛, 2017, 38 (6): 153- 157
DENG Yong, YANG Bin, YUAN Jun Cause of transverse fracture on U75V 60 kg/m heat-treated rail[J]. Iron Steel Vanadium Titanium, 2017, 38 (6): 153- 157
doi: 10.7513/j.issn.1004-7638.2017.06.027
[3]   赵鑫, 温泽峰, 王衡禹, 等 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21 (1): 1- 35
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (1): 1- 35
doi: 10.19818/j.cnki.1671-1637.2021.01.001
[4]   ZHAO X. Dynamic wheel/rail rolling contact at singular defects with application to squats [D]. Delft: Delft University of Technology, 2012.
[5]   张彦平. 重载铁路曲线段钢轨异常磨损研究[D]. 秦皇岛: 燕山大学, 2015.
ZHANG Yan-ping. Research on the abrasion of the heavy-haul railway on the curve section [D]. Qinhuangdao: Yanshan University, 2015.
[6]   ZHOU Y, WANG S F, WANG T Y, et al Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear, 2014, 315 (1/2): 68- 77
[7]   周清跃, 张建峰, 郭战伟, 等 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31 (1): 27- 31
ZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31 (1): 27- 31
[8]   MATSUDA H, SATOH Y, KANEMATSU Y, et al On-site investigation and analysis of damage leading to rail break[J]. Wear, 2011, 271 (1): 168- 173
[9]   寇沙沙, 梁正伟, 刘莉, 等 U75V钢轨鱼鳞伤及剥离掉块缺陷分析[J]. 钢铁钒钛, 2016, 37 (4): 162- 166
KOU Sha-sha, LIANG Zheng-wei, LIU Li, et al Analysis on corner fine cracks and scaling defects of U75V rail[J]. Iron Steel Vanadium Titanium, 2016, 37 (4): 162- 166
doi: 10.7513/j.issn.1004-7638.2016.04.029
[10]   钟雯. 钢轨的损伤机理研究[D]. 成都: 西南交通大学, 2011.
ZHONG Wen. Experimental investigation of rail damnification mechanism [D]. Chengdu: Southwest Jiaotong University, 2011.
[11]   焦彬洋, 王军平, 蒋俊, 等 钢轨打磨对轨面疲劳裂纹扩展的影响[J]. 中国铁路, 2022, (4): 86- 91
JIAO Bin-yang, WANG Jun-ping, JIANG Jun, et al Effect of rail grinding on fatigue crack growth on rail surface[J]. China Railway, 2022, (4): 86- 91
[12]   梁喜仁, 陶功权, 陆文教, 等 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55 (2): 147- 155
LIANG Xi-ren, TAO Gong-quan, LU Wen-jiao, et al Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering, 2019, 55 (2): 147- 155
doi: 10.3901/JME.2019.02.147
[13]   徐万华, 折成林 钢轨打磨对重载铁路小半径曲线轮轨接触区域分布概率和轮轨动力学特性的影响[J]. 铁道技术监督, 2021, 49 (9): 42- 46
XU Wan-hua, ZHE Cheng-lin Influence of rail grinding on distribution probability of wheel-rail contact area and wheel-rail dynamics features of small radius curve in heavy haul railway[J]. Railway Quality Control, 2021, 49 (9): 42- 46
[14]   贺挨宽 缓和曲线线型及长度标准的研究[J]. 铁道标准设计, 2007, (1): 1- 3
HE Ai-kuan Research on line type and length standard of transitional curves[J]. Railway Standard Design, 2007, (1): 1- 3
doi: 10.3969/j.issn.1004-2954.2007.01.002
[15]   蔡宇天, 赵鑫, 陈佳明, 等 城际动车组车轮Ⅰ类滚动接触疲劳机理研究[J]. 中南大学学报: 自然科学版, 2020, 51 (9): 2653- 2662
CAI Yu-tian, ZHAO Xin, CHEN Jia-ming, et al Study on initiation mechanism of rolling contactfatigue class Ⅰ on intercity EMU wheels[J]. Journal of Central South University: Science and Technology, 2020, 51 (9): 2653- 2662
[16]   孙树磊, 丁军君, 周张义, 等 重载列车纵向冲动动力学分析及试验研究[J]. 机械工程学报, 2017, 53 (8): 138- 146
SUN Shu-lei, DING Jun-jun, ZHOU Zhang-yi, et al Analysis and test of heavy haul train longitudinal impulse dynamics[J]. Journal of Mechanical Engineering, 2017, 53 (8): 138- 146
doi: 10.3901/JME.2017.08.138
[17]   陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018.
TAO Gong-quan. Investigation into the formation mechanism of the polygonal wear of HXD electric locomotive wheels [D]. Chengdu: Southwest Jiaotong University, 2018.
[18]   张建全, 黄运华, 李芾 缓和曲线线型对铁道车辆动力学性能的影响[J]. 交通运输工程学报, 2010, 10 (4): 39- 44
ZHANG Jian-quan, HUANG Yun-hua, LI Fu Influence of transition curves on dynamics performance of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 39- 44
doi: 10.3969/j.issn.1671-1637.2010.04.007
[19]   BURSTOW M C. Whole life rail model application and development for RSSB-continued development of an RCF damage parameter [R]. London: [s.n.], 2004.
[20]   李闯 U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43 (1): 152- 156
LI Chuang Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43 (1): 152- 156
doi: 10.13251/j.issn.0254-6051.2018.01.031
[21]   JOHN T, JOHN S, JAVIER P. The development of a wheel wear and rolling contact fatigue model [R]. London: [s.n.], 2007
[22]   FLECHER D J, HYDE P, KAPOOR A Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J]. Wear, 2008, 265 (1): 1317- 1324
[23]   刘永锋. 复杂环境下大功率电力机车车轮滚动接触疲劳机理及防治研究[D]. 成都: 西南交通大学, 2020.
LIU Yong-feng. Study on mechanism and prevention of wheel rolling contact fatigue of high-power AC locomotives running in complicated environments [D]. Chengdu: Southwest Jiaotong University, 2020.
[24]   陈佳明, 赵鑫, 蔡宇天, 等 地铁车轮轮缘根部滚动接触疲劳机理研究[J]. 铁道科学与工程学报, 2020, 17 (9): 2372- 2380
CHEN Jia-ming, ZHAO Xin, CAI Yu-tian, et al Investigation on rolling contact fatigue mechanism of metro wheel flange root[J]. Journal of Railway Science and Engineering, 2020, 17 (9): 2372- 2380
doi: 10.19713/j.cnki.43-1423/u.T20191173
[1] Xue-yang TANG,Xiao-pei CAI,Wei-hua WANG,Wen-hao CHANG,Qi-hao WANG. Rail corrugation recognition based on particle probabilistic neural network algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1766-1774.
[2] Nan WANG,Jin-liu WANG,Cong-hong LIU. Interface opening strategy of high-speed railway station buildings in response to climate and verification by simulation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1071-1079.
[3] Bin ZHANG,Qing-hua GUAN,Wei LI,Ya-bo ZHOU,Ze-feng WEN. Influence of track irregularity and wheel-rail profile compatibility on metro vehicle sway[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1772-1779.
[4] Shi-fan QIAO,Zi-yong CAI,Zhen ZHANG,Jun-kun TAN. Behavior of retaining system of narrow-long deep foundation pit in soft soil in Nansha Port Area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1473-1484.
[5] Chuan-hui WU,Jia LIAO,Shi-yong XIONG,Ying-jie NIU,Bo ZHOU. Contour matching method of groove track based on laser sensor[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1607-1614.
[6] Ya-wen NIU,Cai-you ZHAO,Qiang YI,Duo-jia SHI,Jun-yuan ZHENG,Rong CHEN. Omnidirectional ventilation railway sound barrier capable of realizing wide frequency sound insulation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1048-1055.
[7] Ying-jie NIU,Yan-chen SU,Dun-cheng CHENG,Jia LIAO,Hai-bo ZHAO,Yong-qiang GAO. High-speed rail contact network U-holding nut fault detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1912-1921.
[8] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[9] Qiang LUO,Duo-wei LIANG,Teng-fei WANG,Liang ZHANG,Liang-wei JIANG. Engineering properties testing of scoria as railway subgrade fill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2395-2404.
[10] Ping WANG,Le LIU,Chen-yang HU,Zheng GONG,Jing-mang XU,Zhi-xin WANG. Identification of switch rail brakeage in high speed railway turnout based on elastic wave propagation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2038-2046.
[11] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[12] Shuo-feng ZHAO,Xiao-yan HUANG,You-tong FANG. DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 388-398.
[13] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[14] Wei-yi CAI,Yin-nan YUAN,De-qing MEI,Xiao-dong ZHAO. Effects of nano-scale heterogeneity on fuel jet spray characteristics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2404-2411.
[15] XU Jun, LI Ying-min, YANG Xu-yao, HU Xiao-ping. Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1575-1582.