|
|
Mechanism of rolling contact fatigue occurring on rails of heavy haul railway transition line |
Yang LI1( ),Bin-heng BAI2,Ri-ge-ji-le MO2,Xin ZHAO1,*( ),Ze-feng WEN1,Zhuo WANG3 |
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China 2. Manufacturing Department, Mongolia Baotou Steel Union Limited Company, Baotou 014010, China 3. Maintenance Department, China Railway Hohhot Group Limited Company, Hohhot 010000, China |
|
|
Abstract A field investigation was conducted on a heavy haul railway line with axle load of 25 t. There was a significant difference in rail rolling contact fatigue (RCF) on the entering and leaving transition sections on curves with radius of 580?1000 m, and particularly, the RCF on the leaving transition section was severer. A dynamic model of heavy haul train including two locomotives and 108 wagons was established using Simpack on the basis of on-site wheel/rail observation and train parameter investigation, and a damage function model was applied to numerically analyze the mechanism of the rail RCF difference on the entering and leaving transition sections. Result shows that the RCF difference is dominated by the curving behavior of wagons, and the contribution of the leading wheelsets is the most significant, while the contribution of the trailing wheelsets and locomotives is relatively slight. More detailed analysis shows that the RCF is not significant under the condition of standard wheel/rail profile matching. However, after the wagon wheels wear, the wheel/rail creepage and creep force on the leaving transition section are higher than those on the entering transition section, which is the primary reason for the RCF. And the effect of rail worn profile is not significant for the RCF. The frequent interaction between the worn wagons leading wheelsets and the worn rail on the sharp radius curve is the main reason for the rail RCF difference on the entering and leaving transition sections.
|
Received: 29 October 2022
Published: 16 October 2023
|
|
Fund: 国家自然科学基金资助项目(U21A20167);四川省国际科技创新合作项目(2021YFH0006);牵引动力国家重点实验室自主课题(2022TPL_T06) |
Corresponding Authors:
Xin ZHAO
E-mail: liyang5611@163.com;xinzhao@swjtu.edu.cn
|
重载曲线缓和段钢轨滚动接触疲劳机理
某轴重25 t运煤重载铁路半径580~1000 m的曲线入/出缓和段钢轨存在明显的滚动接触疲劳(RCF)差异现象,出缓和段的疲劳更严重. 在轮轨现场观测和列车参数调研的基础上,使用Simpack建立包含2节内重联机车与108节货车的重载列车动力学模型,利用损伤函数模型数值分析入/出缓和段RCF差异的机理和主要影响因素. 结果表明,RCF差异由货车曲线通过行为主导,货车中转向架导向轮对的贡献最显著,非导向轮对与机车的贡献相对轻微. 在标准轮轨廓形匹配工况下,RCF差异不显著;待货车车轮磨耗失形后,钢轨磨耗失形对RCF差异的影响并不显著,轮轨蠕滑率/力在出缓和段比在入缓和段高是导致RCF差异的根本原因. 磨耗后的货车转向架导向轮对与磨耗轨在小半径曲线上频繁地相互作用,是导致入/出缓和段钢轨RCF差异的主要原因.
关键词:
重载铁路,
钢轨,
滚动接触疲劳(RCF),
缓和曲线,
列车动力学,
损伤函数
|
|
[1] |
金学松, 张继业, 温泽峰, 等 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002, 24 (2): 250- 257 JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24 (2): 250- 257
doi: 10.16579/j.issn.1001.9669.2002.02.023
|
|
|
[2] |
邓勇, 杨滨, 袁俊 U75V 60 kg/m热处理钢轨横向断裂原因分析[J]. 钢铁钒钛, 2017, 38 (6): 153- 157 DENG Yong, YANG Bin, YUAN Jun Cause of transverse fracture on U75V 60 kg/m heat-treated rail[J]. Iron Steel Vanadium Titanium, 2017, 38 (6): 153- 157
doi: 10.7513/j.issn.1004-7638.2017.06.027
|
|
|
[3] |
赵鑫, 温泽峰, 王衡禹, 等 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21 (1): 1- 35 ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (1): 1- 35
doi: 10.19818/j.cnki.1671-1637.2021.01.001
|
|
|
[4] |
ZHAO X. Dynamic wheel/rail rolling contact at singular defects with application to squats [D]. Delft: Delft University of Technology, 2012.
|
|
|
[5] |
张彦平. 重载铁路曲线段钢轨异常磨损研究[D]. 秦皇岛: 燕山大学, 2015. ZHANG Yan-ping. Research on the abrasion of the heavy-haul railway on the curve section [D]. Qinhuangdao: Yanshan University, 2015.
|
|
|
[6] |
ZHOU Y, WANG S F, WANG T Y, et al Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear, 2014, 315 (1/2): 68- 77
|
|
|
[7] |
周清跃, 张建峰, 郭战伟, 等 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31 (1): 27- 31 ZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31 (1): 27- 31
|
|
|
[8] |
MATSUDA H, SATOH Y, KANEMATSU Y, et al On-site investigation and analysis of damage leading to rail break[J]. Wear, 2011, 271 (1): 168- 173
|
|
|
[9] |
寇沙沙, 梁正伟, 刘莉, 等 U75V钢轨鱼鳞伤及剥离掉块缺陷分析[J]. 钢铁钒钛, 2016, 37 (4): 162- 166 KOU Sha-sha, LIANG Zheng-wei, LIU Li, et al Analysis on corner fine cracks and scaling defects of U75V rail[J]. Iron Steel Vanadium Titanium, 2016, 37 (4): 162- 166
doi: 10.7513/j.issn.1004-7638.2016.04.029
|
|
|
[10] |
钟雯. 钢轨的损伤机理研究[D]. 成都: 西南交通大学, 2011. ZHONG Wen. Experimental investigation of rail damnification mechanism [D]. Chengdu: Southwest Jiaotong University, 2011.
|
|
|
[11] |
焦彬洋, 王军平, 蒋俊, 等 钢轨打磨对轨面疲劳裂纹扩展的影响[J]. 中国铁路, 2022, (4): 86- 91 JIAO Bin-yang, WANG Jun-ping, JIANG Jun, et al Effect of rail grinding on fatigue crack growth on rail surface[J]. China Railway, 2022, (4): 86- 91
|
|
|
[12] |
梁喜仁, 陶功权, 陆文教, 等 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55 (2): 147- 155 LIANG Xi-ren, TAO Gong-quan, LU Wen-jiao, et al Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering, 2019, 55 (2): 147- 155
doi: 10.3901/JME.2019.02.147
|
|
|
[13] |
徐万华, 折成林 钢轨打磨对重载铁路小半径曲线轮轨接触区域分布概率和轮轨动力学特性的影响[J]. 铁道技术监督, 2021, 49 (9): 42- 46 XU Wan-hua, ZHE Cheng-lin Influence of rail grinding on distribution probability of wheel-rail contact area and wheel-rail dynamics features of small radius curve in heavy haul railway[J]. Railway Quality Control, 2021, 49 (9): 42- 46
|
|
|
[14] |
贺挨宽 缓和曲线线型及长度标准的研究[J]. 铁道标准设计, 2007, (1): 1- 3 HE Ai-kuan Research on line type and length standard of transitional curves[J]. Railway Standard Design, 2007, (1): 1- 3
doi: 10.3969/j.issn.1004-2954.2007.01.002
|
|
|
[15] |
蔡宇天, 赵鑫, 陈佳明, 等 城际动车组车轮Ⅰ类滚动接触疲劳机理研究[J]. 中南大学学报: 自然科学版, 2020, 51 (9): 2653- 2662 CAI Yu-tian, ZHAO Xin, CHEN Jia-ming, et al Study on initiation mechanism of rolling contactfatigue class Ⅰ on intercity EMU wheels[J]. Journal of Central South University: Science and Technology, 2020, 51 (9): 2653- 2662
|
|
|
[16] |
孙树磊, 丁军君, 周张义, 等 重载列车纵向冲动动力学分析及试验研究[J]. 机械工程学报, 2017, 53 (8): 138- 146 SUN Shu-lei, DING Jun-jun, ZHOU Zhang-yi, et al Analysis and test of heavy haul train longitudinal impulse dynamics[J]. Journal of Mechanical Engineering, 2017, 53 (8): 138- 146
doi: 10.3901/JME.2017.08.138
|
|
|
[17] |
陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018. TAO Gong-quan. Investigation into the formation mechanism of the polygonal wear of HXD electric locomotive wheels [D]. Chengdu: Southwest Jiaotong University, 2018.
|
|
|
[18] |
张建全, 黄运华, 李芾 缓和曲线线型对铁道车辆动力学性能的影响[J]. 交通运输工程学报, 2010, 10 (4): 39- 44 ZHANG Jian-quan, HUANG Yun-hua, LI Fu Influence of transition curves on dynamics performance of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 39- 44
doi: 10.3969/j.issn.1671-1637.2010.04.007
|
|
|
[19] |
BURSTOW M C. Whole life rail model application and development for RSSB-continued development of an RCF damage parameter [R]. London: [s.n.], 2004.
|
|
|
[20] |
李闯 U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43 (1): 152- 156 LI Chuang Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43 (1): 152- 156
doi: 10.13251/j.issn.0254-6051.2018.01.031
|
|
|
[21] |
JOHN T, JOHN S, JAVIER P. The development of a wheel wear and rolling contact fatigue model [R]. London: [s.n.], 2007
|
|
|
[22] |
FLECHER D J, HYDE P, KAPOOR A Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J]. Wear, 2008, 265 (1): 1317- 1324
|
|
|
[23] |
刘永锋. 复杂环境下大功率电力机车车轮滚动接触疲劳机理及防治研究[D]. 成都: 西南交通大学, 2020. LIU Yong-feng. Study on mechanism and prevention of wheel rolling contact fatigue of high-power AC locomotives running in complicated environments [D]. Chengdu: Southwest Jiaotong University, 2020.
|
|
|
[24] |
陈佳明, 赵鑫, 蔡宇天, 等 地铁车轮轮缘根部滚动接触疲劳机理研究[J]. 铁道科学与工程学报, 2020, 17 (9): 2372- 2380 CHEN Jia-ming, ZHAO Xin, CAI Yu-tian, et al Investigation on rolling contact fatigue mechanism of metro wheel flange root[J]. Journal of Railway Science and Engineering, 2020, 17 (9): 2372- 2380
doi: 10.19713/j.cnki.43-1423/u.T20191173
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|