Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2395-2404    DOI: 10.3785/j.issn.1008-973X.2020.12.014
    
Engineering properties testing of scoria as railway subgrade fill
Qiang LUO1,2(),Duo-wei LIANG1,Teng-fei WANG1,2,*,Liang ZHANG1,2,Liang-wei JIANG1,2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(1574KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Natural scoria has issues regarding field compaction and testing indices, which needs to be resolved. Laboratory soil testing was conducted on natural scoria samples collected in field to reveal its vesicular structure, mineral phase, mechanical and physical properties. The impact of silty sand addition and mixing ratio on the engineering properties of mixed soils was explored by field compaction tests. Results indicate that the particles of scoria have rough surface and extensive inner voids, the crushing ratio is positively related to the open void ratio, and their L.A. abrasion loss value was less than 50.0%; the presence of fine aggregates can mitigate grain crushing. The modulus of subgrade reaction (K30) for stabilized fill first increases then decreases with the rising of mixing ratio, which coincides with the transition mode of three soil structures, namely, fine-graded, stone matrix, and open-graded types. The stabilized soils with volumetric mixing ratio of 4∶1~2∶1 can be classified as a stone matrix type, with specimen at mixing ratio of 2∶1 achieving the best performance in practice. In summary, the particles of scoria are found to have desirable strength against grain crushing, and the performance of scoria–silty sand mixtures are much better than natural scoria; inter-particle void ratio is suggested to be taken as an indicator of quality assessment for subgrade compaction.



Key wordsscoria      railway subgrade      stabilized fill material      soil testing      field compaction test     
Received: 16 October 2019      Published: 31 December 2020
CLC:  U 213  
Corresponding Authors: Teng-fei WANG     E-mail: lqrock@swjtu.edu.cn
Cite this article:

Qiang LUO,Duo-wei LIANG,Teng-fei WANG,Liang ZHANG,Liang-wei JIANG. Engineering properties testing of scoria as railway subgrade fill. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2395-2404.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2395


铁路路基火山渣填料工程特性试验

为了解决天然火山渣难压实、检测指标低问题,采集现场火山渣试样,开展室内土工试验,分析天然火山渣多孔隙特征、矿物成分与物理力学性质;掺配粉土质砂后进行混合土现场填筑试验,讨论不同掺配比对改良火山渣填料工程特性影响规律. 研究表明:火山渣颗粒表面粗糙且内部多孔隙,其开口孔隙率与压碎率呈正相关,洛杉矶磨耗率<50.0%;细集料可以抑制改良土骨架颗粒破碎;改良火山渣材料K30指标随细集料体积分数升高先增加后降低,契合骨架空隙、骨架密实及悬浮密实3种粗颗粒土体结构过渡形式,体积掺配比为4∶1~2∶1的改良土属泛骨架密实结构,在掺配比为2∶1时达到最优工程特性. 火山渣颗粒块体性好,硬度较高,掺配粉土质砂改良火山渣能显著提升其力学性能,建议采用颗粒间间隙率作为改良火山渣填料的现场压实控制指标.


关键词: 火山渣,  铁路路基,  改良土填料,  土工试验,  填筑试验 
Fig.1 X-ray Powder diffractometer DX-2000 and X-ray Fluorescence Spectrometry AXIOS MAX
矿物组成 wB 矿物组成 wB
高温钠长石 31.2 辉石 9.5
拉长石 26.6 镁橄榄石 5.3
中长石 10.1 含锰铁橄榄石 2.0
赤铁矿 5.0 碳钛石 1.8
磁铁矿 3.3 碳氟磷灰石 0.8
方铁矿 1.2 非结晶物质 3.2
Tab.1 Minerals of tested scoria %
化学组成 wB 化学组成 wB
SiO2 48.880 K2O 1.340
Al2O3 16.960 P2O5 0.590
Fe2O3 11.160 MnO 0.180
MgO 4.090 SO3 0.048
Na2O 3.590 灼失 1.280
TiO2 2.270 结合水 0.063
Tab.2 Chemical composition of tested scoria %
Fig.2 Plane projection of scoria particle (grain size: 10~20 mm)
Fig.3 Variation of shape parameters of geomaterials with grain size
Fig.4 Densities and open void ratio collected from 19 samples
Fig.5 Open void ratio between scoria and well-graded gravels
Fig.6 Relationship between open void ratio and percentage of crushed particles in scoria
${\rho }_{{\rm{s}}}$/(g·cm?3) ωL/% ωP/% ${w}_{\mathrm{o}\mathrm{p}\mathrm{t} }$/% ρdmax/(g·cm?3)
2.541 41.6 33.4 20.9 1.48
Tab.3 Physical properties of geomaterial added (grain size<0.5 mm)
Fig.7 Grodingcurve of scoria, silty sand, and their mixtures
M ρs/(g·cm?3) ρa/(g·cm?3) ρdmax/(g·cm?3) $ {w}_{{\rm{opt}}} $/%
4:1 2.517 1.975 1.60 14.5
3.5∶1 2.443 1.963 1.63 11.6
3∶1 2.456 1.927 1.59 11.3
2.5∶1 2.399 1.864 1.63 14.4
2∶1 2.573 2.020 1.59 11.3
1.5∶1 2.450 1.944 1.62 16.0
Tab.4 Densities and compaction parameters of stabilized soils
M 水的最优质量分数 K/% c/kPa φ/(°)
1) 注:掺配比2∶1和3∶1对应的水的最优质量分数为11.3%,饱和水的质量分数分别为26.8%~29.2%和23.3%~25.7%
2∶1 最优 90 97.1 38.5
最优 93 128.8 38.9
饱和 90 44.9 34.3
饱和 93 50.8 36.1
3∶1 最优 90 81.9 39.2
最优 93 82.9 40.7
饱和 90 54.2 34.9
饱和 93 57.4 38.9
Tab.5 Consolidated undrained shear strength of stabilized soils
Fig.8 Stress–strain curves of 2∶1 stabilized scoria at 93% of relative compaction and 70 kPa of confining pressure
Fig.9 Field of subgrade construction testing
Fig.10 Layout of test scheme
指标 M 实测样本/% 推测值/% 代表值/%
K 天然 97.8, 98.8, 97.0, 99.2, 93.8, 95.3, 93.3, 93.2, 90.8, 94.6, 93.0, 90.7, 93.1, 90.2, 95.1 N/A 92.9
4∶1 95.5, 93.2, 95.3, 94.1, 93.1 93.8 93.3
3.5∶1 92.4, 90.2, 91.5, 98.8, 99.0 94.2 91.3
3∶1 89.0, 91.3, 93.8, 93.4, 95.6, 94.5, 91.7, 94.3, 93.4 N/A 91.8
2.5∶1 90.6, 95.3, 93.0 92.2, 93.0, 94.5 91.7
2∶1 95.1, 90.0, 90.8, 95.1, 98.3, 92.5, 93.2, 97.7, 92.6, 91.6, 97.7, 94.1, 98.4, 87.8, 95.5, 93.4,
92.7, 96.8, 92.5, 95.8, 92.0
N/A 92.9
1.5∶1 90.6, 93.8, 95.2, 94.9, 93.1 93.7 92.2
n 天然 40.7, 41.1, 42.1, 39.1, 38.5, 39.6, 38.2, 41.6, 40.7, 41.9, 42.0, 43.5, 43.5, 42.0, 43.8 N/A 43.0
4∶1 39.0, 40.4, 39.4, 40.2, 40.7 40.3 40.5
3.5∶1 38.3, 39.8, 38.9, 37.9, 37.8 38.7 39.2
3∶1 40.6, 39.4, 37.7, 39.5, 38.1, 38.8, 40.6, 38.9, 39.5 N/A 39.8
2.5∶1 38.4, 39.3, 38.9 38.7, 38.9, 38.8 39.1
2∶1 38.2, 41.5, 41.4, 38.6, 37.8, 41.5, 41.1, 38.2, 41.4, 42.0, 40.6, 37.9, 44.6, 39.7, 41.0,
41.5, 40.2, 42.8, 40.8, 43.1, 39.5
N/A 41.3
1.5∶1 40.2, 40.0, 37.9, 36.8, 37.0 39.5 39.8
$ {n}_{j} $ 天然 26.8, 27.1, 28.3, 28.8, 28.1, 29.3, 27.8, 31.7, 30.6, 33.9, 34.0, 35.7, 35.7, 34.0, 36.1 N/A 32.7
4∶1 22.2, 24.0, 23.7, 24.7, 25.3 24.4 24.9
3.5∶1 23.3, 25.1, 24.0, 21.5, 21.3 22.5 24.2
3∶1 23.3, 24.3, 22.2, 22.9, 21.1, 22.0, 24.3, 22.2, 22.9 N/A 23.5
2.5∶1 20.8, 23.3, 22.1 22.5, 21.7, 22.9 23.3
2∶1 21.9, 26.1, 27.0, 23.6, 23.7, 28.2, 27.6, 24.1, 28.0, 28.8, 26.0, 22.6, 31.0, 24.9,
26.5, 27.1, 22.8, 26.2, 23.7, 26.7, 21.9
N/A 26.6
1.5∶1 24.7, 24.5, 21.9, 20.2, 20.5 22.3 23.9
Tab.6 Summary statistics of compaction evaluation for scoria and stabilized aggregates
Fig.11 Impact of field compaction on gradation of stabilized soil at 3∶1 blend ratio
Fig.12 Effect of mixing radio on modulus of subgrade reaction (K30) for stabilized subgrade
Fig.13 Relationship between gradation characteristics of stabilized scoria and structure of compacted conarsegrained soil
路基层位 K/% n/% K30/(MPa·m?1) MR
1) 注:火山渣颗粒的洛杉矶磨耗率<50%.
基床表层 ≥93 ≤29 ≥140 2:1
基床底层 ≥91 ≤31 ≥120 3:1~1.5:1
基床以下路堤 ≥90 ≤32 ≥110 3.5:1~1.5:1
Tab.7 Recommended guidelines of fill material for second-class railroad subgrade
[1]   马鸿文. 工业矿物与岩石[M]. 北京: 化学工业出版社, 2002.
[2]   刘若新. 中国的活火山[M]. 北京: 地震出版社, 2000.
[3]   NEWILL D, ROBINSON R, AKLILU K. Experimental use of cinder gravels on road in Ethiopia [C]// Proceedings of 9th Regional Conference for Africa on Soil Mechanics and Foundation Engineering. Lagos: CRC Press, 1987: 467-488.
[4]   GARETH, G J, OTTO A, GREENING P A K. Investigation of the use of cinder gravels in pavement layers for low-volume roads [R]. London: ReCAP for DFID, 2018.
[5]   BERHANU G Stabilization of cinder gravels for heavily trafficked base course[J]. Journal of EEA, 2009, 26 (1): 23- 29
[6]   LEMOUGNA P N, WANG K, TANG Q, et al Review on the use of volcanic ashes for engineering applications[J]. Resources, Conservation and Recycling, 2018, 137: 177- 190
doi: 10.1016/j.resconrec.2018.05.031
[7]   HEARN G J, OTTO A, GREENING P A K, et al Engineering geology of cinder gravel in Ethiopia: prospecting, testing and application to low-volume roads[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 3095- 3110
doi: 10.1007/s10064-018-1333-3
[8]   日本国有铁道. 土工结构物设计标准和解说[M]. 北京: 中国铁道出版社, 1982.
[9]   AGUSTIAN Y, GOTO S Strength and deformation characteristics of scoria in triaxial compression at low confining stress[J]. Soils and Foundations, 2008, 48 (1): 27- 39
doi: 10.3208/sandf.48.27
[10]   AGUSTIAN Y, GOTO S Undrained cyclic shear behaviour of reconstituted scoria deposit[J]. Soils and Foundations, 2008, 48 (6): 851- 857
doi: 10.3208/sandf.48.851
[11]   陈志国, 王哲人, 赵长虹 火山灰路面基层路用性能研究及机理分析[J]. 公路交通科技, 2008, 25 (8): 15- 20
CHEN Zhi-guo, WANG Zhen-ren, ZHAO Chang-hong Research on pavement performance of volcanic ash road base and its mechanism[J]. Journal of Highway and Transportation Research and development, 2008, 25 (8): 15- 20
doi: 10.3969/j.issn.1002-0268.2008.08.004
[12]   孙宇怀. 火山灰水泥混凝土路面设计及施工技术研究[D]. 长春: 吉林大学, 2009.
SUN Yu-huai. Study on the design and construction technology of volcanic ash cement concrete pavement [D]. Changchun: Jilin University, 2009.
[13]   赵长虹. 火山灰材料在道路工程中的应用研究[D]. 长春: 吉林大学, 2008.
ZHAO Chang-hong. Study on the application of volcanic ash in road engineering [D]. Changchun: Jilin University, 2008.
[14]   孙彬彬, 张兵, 刘顺凯 基于颗粒形状参数的火山渣桩侧摩阻特性研究[J]. 水利水电技术, 2019, 50 (4): 1- 6
SUN Bin-bin, ZHANG Bing, LIU Shun-kai Particle shape parameter-based study on lateral friction characteristics of cast-in-place pile in volcanic scoria stratum[J]. Water Resources and Hydropower Engineering, 2019, 50 (4): 1- 6
[15]   李晓燕, 卜胤, 汪海年, 等 粗集料形态特征的定量评价指标研究[J]. 建筑材料学报, 2015, 18 (3): 524- 530
LI Xiao-yan, BU Yin, Wang Hai-nian, et al Research on quantitative evaluation of morphological characteristic of coarse aggregates[J]. Journal of Building Materials, 2015, 18 (3): 524- 530
doi: 10.3969/j.issn.1007-9629.2015.03.028
[16]   邱德仁. 原子光谱分析[M]. 上海: 复旦大学出版社, 2002.
[17]   GB/T17412.1—1998火成岩岩石分类和命名方案[S]. 北京: 中国标准出版社, 1999.
[18]   TB10102—2010 铁路工程土工试验规程[S]. 北京: 中国铁道出版社, 2011.
[19]   铁69-59铁路碎石道碴[S]. 北京: 中国铁道出版社, 1959.
[20]   TB/T 2140—90 铁路碎石道砟[S]. 北京: 中国铁道出版社, 1990.
[21]   TB/T 2104—2008 铁路碎石道砟[S]. 北京: 中国铁道出版社,2008.
[22]   TB/T 2897—1998铁路碎石道床底碴[S]. 北京: 中国铁道出版社, 1998.
[23]   尧俊凯, 叶阳升, 王鹏程, 等 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41 (4): 782- 788
YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, et al Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (4): 782- 788
[24]   张莎莎, 谢山杰, 杨晓华, 等 火山灰改良粗粒硫酸盐渍土路基填料及其作用机理研究[J]. 岩土工程学报, 2019, 41 (3): 588- 594
ZHANG Sha-sha, XIE Shan-jie, YANG Xiao-hua, et al Action mechanism of coarse particle sulfate soil subgrade modified by volcanic ash[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (3): 588- 594
[25]   徐鹏, 蒋关鲁, 任世杰, 等 红层泥岩及其改良填料路基动力响应试验研究[J]. 岩土力学, 2019, 40 (2): 678- 683
XU Peng, JIANG Guan-lu, REN Shi-jie, et al Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone[J]. Rock and Soil Mechanics, 2019, 40 (2): 678- 683
[26]   GB/T 50145—2007 土的工程分类标准[S]. 北京: 中国计划出版社, 2008.
[27]   罗强, 方东, 詹学启, 等 蒙华铁路路基全风化软质岩填料碾压工艺试验[J]. 铁道工程学报, 2018, 35 (9): 9- 13
LUO Qiang, FANG Dong, ZHAN Xue-qi, et al Compaction technology test of full weathering soft rock subgrade filling for Mengxi-Central China Railway[J]. Journal of Railway Engineering Society, 2018, 35 (9): 9- 13
doi: 10.3969/j.issn.1006-2106.2018.09.002
[28]   陈坚. 路基粗颗粒填料堆积特性试验研究[D]. 成都: 西南交通大学, 2014.
CHEN Jian. Experimental study on packing characteristics of gravel filling subgrade [D]. Chengdu: Southwest Jiaotong University, 2014.
[1] Juan-juan REN,Ji WANG,Jia-le LI,Shi-jie DENG,Jia-duo XU,Xiao LI. Damage law of track slab based on concrete damaged plasticity model[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1448-1456.
[2] CHEN Ren-peng, WANG Zuo-zhou, JIANG Hong-guang, BIAN Xue-cheng. Control standard of differential settlement in high-speed railway slab based on bending fatigue strength [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 796-802.
[3] DAI Gong-lian, ZHENG Peng-fei, YAN Bin, XIAO Xiang-nan. Longitudinal force of CWR on box girder under solar radiation[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 609-614.
[4] XIAO Jun-Hua, ZHOU Shun-Hua, HUI Kai. Long term settlement of railroad silt subgrade induced by train loading[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1912-1918.