Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1128-1134    DOI: 10.3785/j.issn.1008-973X.2021.06.013
    
Lower-dimensional approximation models of tangential strain rate of turbulent flames
Jia-hao REN(),Hai-ou WANG*(),Jiang-kuan XING,Kun LUO,Jian-ren FAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1241KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The relationship between two-dimensional (2D) and three-dimensional (3D) probability density functions (PDF) of tangential strain rate was proposed by theoretical method. Artificial neural network (ANN) and random forest (RF) models were developed to predict the 3D tangential strain rate from lower-dimensional quantities based on a direct numerical simulation (DNS) database of freely propagating premixed flames with three different turbulent intensities. The input features of the machine learning models include species mass fraction, 2D gradient of the flames normal vector and 2D velocity gradient tensor. The comparison of the model predictions and the DNS results showed that the PDF predicted by the theoretical model accorded with that of the DNS. The correlation coefficient of the RF predictions and actual values of the DNS was greater than 0.97, which was superior to that of the ANN model. The difference of the RF model predicted and actual PDF was smaller than that of the theoretical model predicted and actual PDF. 3D tangential strain rate can be accurately predicted by the RF model from lower-dimensional quantities.



Key wordsturbulent combustion      combustion model      direct numerical simulation      tangential strain rate      machine learning     
Received: 24 February 2021      Published: 30 July 2021
CLC:  TK 5  
Fund:  国家自然科学基金重大研究计划资助项目(91841302);国家自然科学基金资助项目(51976185)
Corresponding Authors: Hai-ou WANG     E-mail: renjh@zju.edu.cn;wanghaiou@zju.edu.cn
Cite this article:

Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.06.013     OR     https://www.zjujournals.com/eng/Y2021/V55/I6/1128


湍流火焰切向应变率的低维近似模型

利用理论方法,提出切向应变率二维与三维概率密度函数(PDF)之间的关系. 基于3种不同湍流强度的自由传播预混火焰直接数值模拟(DNS)数据库,建立人工神经网络(ANN)和随机森林(RF)模型,从低维量预测三维切向应变速率. 机器学习模型的输入特征包括组分质量分数、二维火焰面法向量梯度和二维速度梯度张量. 模型预测结果与DNS结果对比表明,理论模型预测的PDF与DNS的真实PDF吻合较好. RF模型的预测值与DNS实际值间的相关系数大于0.97,优于ANN模型. RF模型得到的PDF与真实PDF间的误差小于理论模型得到的PDF与真实PDF间的误差. RF模型能够由低维量准确预测三维切向应变率.


关键词: 湍流燃烧,  燃烧模型,  直接数值模拟,  切向应变率,  机器学习 
算例 u′/(m·s?1 lt /mm τe /ms Re Ka
L 0.78 0.66 0.85 33 38
M 3.88 0.66 0.17 163 390
H 9.70 0.66 0.07 408 1710
Tab.1 Parameters of DNS
Fig.1 Slices of distributions of progress variable in typical x-y planes
Fig.2 Schematic of coordinate system.
Fig.3 Topological structures of machine learning models
Fig.4 Comparison of two-dimensional, three-dimensional and model predicted probability density functions in theoretical model
Fig.5 Results of hyper-parameter optimization of models
Fig.6 Scatter plots of modeled and actual values for test samples
模型 算例 R R2 MAPE /%
ANN L 0.908 0.822 22.15
ANN M 0.818 0.669 53.43
ANN H 0.792 0.623 71.82
RF L 0.997 0.994 4.14
RF M 0.984 0.968 11.73
RF H 0.981 0.960 16.23
Tab.2 Comparison of performance of ANN model and RF model
Fig.7 Comparison of two-dimensional, three-dimensional and model predicted probability density functions in RF model
Fig.8 Feature importance based on RF model
[1]   DRISCOLL J F, CHEN J H, SKIBA A W, et al Premixed flames subjected to extreme turbulence: some questions and recent answers[J]. Progress in Energy and Combustion Science, 2020, 76 (1): 100802
[2]   WANG J, ZHANG M, HUANG Z, et al Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure[J]. Combustion and Flame, 2013, 160 (11): 2434- 2441
doi: 10.1016/j.combustflame.2013.06.008
[3]   WANG H, HAWKES E R, CHEN J H Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame[J]. Physics of Fluids, 2016, 28 (9): 095107
doi: 10.1063/1.4962501
[4]   WANG H, HAWKES E R, CHEN J H A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame [J]. Combustion and Flame, 2017, 180 (6): 110- 123
[5]   WANG H, HAWKES E R, CHEN J H, et al Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame: an analysis of flame stretch and flame thickening[J]. Journal of Fluid Mechanics, 2017, 815 (2): 511- 536
[6]   ZHANG Q, SHANBHOGUE S J, LIEUWEN T, et al Strain characteristics near the flame attachment point in a swirling flow[J]. Combustion Science and Technology, 2011, 183 (7): 665- 685
doi: 10.1080/00102202.2010.537288
[7]   STEINBERG A M, DRISCOLL J F Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics[J]. Combustion and Flame, 2009, 156 (12): 2285- 2306
doi: 10.1016/j.combustflame.2009.06.024
[8]   DONBAR J M, DRISCOLL J F, CARTER C D Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames[J]. Combustion and Flame, 2001, 125 (4): 1239- 1257
doi: 10.1016/S0010-2180(01)00246-2
[9]   KARPETIS A N, BARLOW R S Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames[J]. Proceedings of the Combustion Institute, 2005, 30 (1): 665- 672
doi: 10.1016/j.proci.2004.08.222
[10]   KARPETIS A N, BARLOW R S Measurements of scalar dissipation in a turbulent piloted methane/air jet flame[J]. Proceedings of the Combustion Institute, 2002, 29 (2): 1929- 1936
doi: 10.1016/S1540-7489(02)80234-6
[11]   ZHANG M, WANG J, JIN W, et al Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame[J]. Combustion and Flame, 2015, 162 (5): 2087- 2097
doi: 10.1016/j.combustflame.2015.01.007
[12]   HAWKES E R, SANKARAN R, CHEN J H, et al An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1455- 1463
doi: 10.1016/j.proci.2008.06.122
[13]   VEYNANTE D, LODATO G, DOMINGO P, et al Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion[J]. Experiments in Fluids, 2010, 49 (1): 267- 278
doi: 10.1007/s00348-010-0851-y
[14]   HAWKES E R, SANKARAN R, CHEN J H Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1447- 1454
doi: 10.1016/j.proci.2010.06.019
[15]   CHAKRABORTY N, KOLLA H, SANKARAN R, et al Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 1151- 1162
doi: 10.1016/j.proci.2012.06.040
[16]   CHAKRABORTY N, HARTUNG G, KATRAGADDA M, et al Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data[J]. Combustion and Flame, 2011, 158 (7): 1372- 1390
doi: 10.1016/j.combustflame.2010.11.014
[17]   PETERS N. Turbulent combustion [M]. Cambridge: Cambridge University Press, 2001.
[18]   CHEN J H, CHOUDHARY A, DE SUPINSKI B, et al Terascale direct numerical simulations of turbulent combustion using S3D[J]. Computational Science and Discovery, 2009, 2 (1): 015001
doi: 10.1088/1749-4699/2/1/015001
[19]   CHAKRABORTY N, CANT R S Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime[J]. Physics of Fluids, 2005, 17 (10): 105105
doi: 10.1063/1.2084231
[20]   RUMELHART D E, HINTON G E, WILLIAMS R J Learning representations by back-propagating errors[J]. Nature, 1986, 323 (6088): 533- 536
doi: 10.1038/323533a0
[21]   GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
[22]   BREIMAN L Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32
doi: 10.1023/A:1010933404324
[23]   XING J, LUO K, PITSCH H, et al Predicting kinetic parameters for coal devolatilization by means of artificial neural networks[J]. Proceedings of the Combustion Institute, 2018, 37 (3): 1- 8
[24]   WANG Z, LUO K, LI D, et al Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30 (12): 125101
doi: 10.1063/1.5054835
[25]   XING J, WANG H, LUO K, et al Predictive single-step kinetic model of biomass devolatilization for CFD applications: a comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)[J]. Renewable Energy, 2019, 136 (6): 104- 114
[1] Yi-cong GAO,Yan-kun WANG,Shao-mei FEI,Qiong LIN. Intelligent proofreading method of engineering drawing based on transfer learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 856-863, 889.
[2] Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.
[3] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[4] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[5] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[6] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[7] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[8] Zhi-yuan WAN,Jia-heng TAO,Jia-kun LIANG,Zhen-gong CAI,Cheng CHANG,Lin QIAO,Qiao-ni ZHOU. Large-scale empirical study on machine learning related questions on Stack Overflow[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 819-828.
[9] Dong-xiang KE,Li-min PAN,Sen-lin LUO,Han-qing ZHANG. Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2013-2023.
[10] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[11] WANG Hong-kai, CHEN Zhong-hua, ZHOU Zong-wei, LI Ying-ci, LU Pei-ou, WANG Wen-zhi, LIU Wan-yu, YU Li-juan. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 788-797.
[12] WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1226-1233.
[13] CHEN Kai, YU Zhao-sheng, SHAO Xue-ming. Direct simulation of natural convection
in square cavity filled with porous media
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 549-554.