Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2106-2114    DOI: 10.3785/j.issn.1008-973X.2025.10.011
    
Mining truck sideslip angle estimation based on multiple methods weighted fusion
Zhongxing LI(),Yingzhu JIA,Guoqing GENG,Yixu QIN,Xinchang YANG
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Download: HTML     PDF(1709KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the challenge of estimating the sideslip angle of the mining truck in rugged terrain conditions, a sideslip angle estimation method based on the weighted fusion of the extended Kalman filter (EKF) method and the integration method was proposed. To accurately describe the vehicle’s motion state, a 17-DOF dynamic model of a mining truck incorporating both solid axle suspension and tandem suspension was established. Using a wheel-speed-based vehicle longitudinal speed estimator to obtain a preliminary estimate of the vehicle’s longitudinal velocity, a vehicle longitudinal and lateral velocity estimator based on EKF and a vehicle lateral velocity integration estimator were developed. Based on the characteristics of the EKF method and the integration method, a proportional-derivative fusion weight calculation method was proposed to fuse the two methods. Simulation results show that the proposed method can achieve accurate estimation of the vehicle’s sideslip angle by leveraging the advantages of both the EKF method and integration method, and has a good adaptability to the rugged terrain conditions.



Key wordsmining truck      state estimation      fusion estimation      dynamics model      sideslip angle      extended Kalman filter (EKF)     
Received: 25 September 2024      Published: 27 October 2025
CLC:  U 461.1  
Cite this article:

Zhongxing LI,Yingzhu JIA,Guoqing GENG,Yixu QIN,Xinchang YANG. Mining truck sideslip angle estimation based on multiple methods weighted fusion. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2106-2114.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.011     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2106


基于多方法加权融合的矿用车质心侧偏角估计

针对矿用车在崎岖路面工况下质心侧偏角估计困难的问题,提出基于扩展卡尔曼滤波(EKF)方法和积分方法加权融合的质心侧偏角估计方法. 为了准确描述车辆运动状态,建立包含非独立悬架和平衡悬架的矿用车十七自由度动力学模型. 利用基于轮速的车辆纵向速度估计器获取车辆纵向速度初步估计值,构建基于EKF的车辆纵、横向速度估计器和车辆横向速度积分估计器. 根据EKF方法和积分方法的特点,提出比例-微分融合权重系数计算方法,借此对2种方法进行加权融合. 仿真实验结果表明,所提方法能够结合EKF方法和积分方法的优点,实现车辆质心侧偏角的准确估计,具有较好的崎岖路面工况适应能力.


关键词: 矿用车,  状态估计,  融合估计,  动力学模型,  质心侧偏角,  扩展卡尔曼滤波(EKF) 
参数数值
满载质量m/kg110 000
整车横摆转动惯量Iz/(kg·m2)470 000
车轮半径R/mm734
满载质心高度h/mm1 995
质心到一轴的距离l1/mm3 693
质心到二轴的距离l2/mm107
质心到三轴的距离l3/mm1 857
一轴轮距B1/mm3 094
二轴轮距B2/mm2 984
三轴轮距B3/mm2 984
一轴非簧载质量ma1/(kg·m2)800
二轴非簧载质量ma2/(kg·m2)1 100
三轴非簧载质量ma3/(kg·m2)1 100
一桥侧倾转动惯量Ia1/(kg·m2)300
二桥侧倾转动惯量Ia2/(kg·m2)350
三桥侧倾转动惯量Ia3/(kg·m2)350
Tab.1 Parameters of mining truck
Fig.1 Seventeen-DOF dynamics model of mining truck
Fig.2 Longitudinal and normal tire forces in rugged terrain
Fig.3 Forces on left balance beam
参数数值参数数值
a01.597a7?0.3168
a1?1.103a80.01101
a2819.7a90.001710
a323340a10?0.1327
a4312.1a1120.17
a50.02031a12?5.208
a60.00001942a13?85.30
Tab.2 Lateral force characteristic parameters of tires
Fig.4 Comparison of lateral velocity estimation effect between extended Kalman filter method and integral method
Fig.5 Proportional-derivative fusion weight calculation method
Fig.6 Flowchart of mining truck sideslip angle estimation method
Hs/mm估计方法v=15 km/hv=20 km/h
RMSE/(°)ME/(°)RMSE/(°)ME/(°)
150EKF0.136 80.413 60.256 90.622 5
积分0.132 20.269 60.137 20.312 4
融合0.087 30.253 70.100 50.265 3
200EKF0.199 30.639 40.414 71.077 0
积分0.158 10.325 70.249 00.455 0
融合0.116 70.321 60.181 30.386 1
Tab.3 Vehicle sideslip angle estimation error on twist road
Fig.7 Vehicle sideslip angle estimation result on twist road (Hs=150 mm)
Hs/mm估计方法v=15 km/hv=20 km/h
RMSE/(°)ME/(°)RMSE/(°)ME/(°)
180EKF0.157 10.496 20.241 50.587 3
积分0.091 20.186 40.383 70.612 4
融合0.060 00.173 80.228 20.547 9
140EKF0.131 50.432 70.174 70.446 1
积分0.056 90.159 20.182 00.362 7
融合0.053 70.153 60.147 70.370 6
Tab.4 Sideslip angle estimation error on single-sided bumps
Fig.8 Vehicle sideslip angle estimation result on single-sided bumps (Hs=180 mm)
[1]   李兆强, 吴巧俊, 熊福力, 等. 基于点云曲面拟合的自适应阈值地面分割算法 [EB/OL]. (2024–08–21)[2024–09–05]. https://link.cnki.net/urlid/11.2127.TP.20240821.0831.006.
[2]   MAZZILLI V, DE PINTO S, PASCALI L, et al Integrated chassis control: classification, analysis and future trends[J]. Annual Reviews in Control, 2021, 51: 172- 205
doi: 10.1016/j.arcontrol.2021.01.005
[3]   SKRICKIJ V, KOJIS P, ŠABANOVIČ E, et al Review of integrated chassis control techniques for automated ground vehicles[J]. Sensors, 2024, 24 (2): 600
doi: 10.3390/s24020600
[4]   SINGH K B, ALI ARAT M, TAHERI S Literature review and fundamental approaches for vehicle and tire state estimation[J]. Vehicle System Dynamics, 2019, 57 (11): 1643- 1665
doi: 10.1080/00423114.2018.1544373
[5]   陈慧, 高博麟, 徐帆 车辆质心侧偏角估计综述[J]. 机械工程学报, 2013, 49 (24): 76- 94
CHEN Hui, GAO Bolin, XU Fan Review on vehicle sideslip angle estimation[J]. Journal of Mechanical Engineering, 2013, 49 (24): 76- 94
doi: 10.3901/JME.2013.24.076
[6]   JIN X, YIN G, CHEN N Advanced estimation techniques for vehicle system dynamic state: a survey[J]. Sensors, 2019, 19 (19): 4289
doi: 10.3390/s19194289
[7]   汪洪波, 徐世寒, 周道林, 等 基于模糊滑模观测器与传感器信号积分可拓融合的车辆质心侧偏角估计[J]. 北京理工大学学报, 2022, 42 (7): 713- 722
WANG Hongbo, XU Shihan, ZHOU Daolin, et al Vehicle mass-centroid sideslip angle estimation based on extension fusion of fuzzy sliding-mode observer and sensor signal integral[J]. Transactions of Beijing Institute of Technology, 2022, 42 (7): 713- 722
[8]   卢兴华, 季学武, 刘贺, 等 基于轮胎侧偏刚度变化率的车辆质心侧偏角融合估计算法[J]. 科学技术与工程, 2021, 21 (29): 12735- 12743
LU Xinghua, JI Xuewu, LIU He, et al Fusion estimation algorithm of vehicle sideslip angle based on changing rate of tire cornering stiffness[J]. Science Technology and Engineering, 2021, 21 (29): 12735- 12743
[9]   夏秋, 陈特, 陈龙, 等 基于冗余信息融合的车辆质心侧偏角估计方法[J]. 汽车工程, 2022, 44 (2): 280- 289
XIA Qiu, CHEN Te, CHEN Long, et al Vehicle sideslip angle estimation method based on redundant information fusion[J]. Automotive Engineering, 2022, 44 (2): 280- 289
[10]   CHEN T, CAI Y, CHEN L, et al Sideslip angle fusion estimation method of three-axis autonomous vehicle based on composite model and adaptive cubature Kalman filter[J]. IEEE Transactions on Transportation Electrification, 2024, 10 (1): 316- 330
doi: 10.1109/TTE.2023.3263592
[11]   WU Y, LI G, FAN D Joint estimation of driving state and road adhesion coefficient for distributed drive electric vehicle[J]. IEEE Access, 2021, 9: 75460- 75469
doi: 10.1109/ACCESS.2021.3081443
[12]   ZHANG Y, LI M, ZHANG Y, et al An enhanced adaptive unscented Kalman filter for vehicle state estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6502412
[13]   李韶华, 王桂洋, 杨泽坤, 等 基于DRBF-EKF算法的车辆质心侧偏角与路面附着系数动态联合估计[J]. 力学学报, 2022, 54 (7): 1853- 1865
LI Shaohua, WANG Guiyang, YANG Zekun, et al Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (7): 1853- 1865
[14]   QI D, FENG J, NI X, et al Maximum correntropy extended Kalman filter for vehicle state observation[J]. International Journal of Automotive Technology, 2023, 24 (2): 377- 388
doi: 10.1007/s12239-023-0031-8
[15]   张年瑞. 转弯制动工况下车辆状态估计及稳定性控制研究 [D]. 长春: 吉林大学, 2022: 1–67.
ZHANG Nianrui. Research on vehicle state estimation and handling stability control under cornering braking [D]. Changchun: Jilin University, 2022: 1–67.
[16]   陈建锋, 吴强, 葛新元, 等 基于切换策略的车辆质心侧偏角高性能获取[J]. 汽车工程, 2024, 46 (2): 346- 355
CHEN Jianfeng, WU Qiang, GE Xinyuan, et al High-performance acquisition for vehicle sideslip angle based on switch strategy[J]. Automotive Engineering, 2024, 46 (2): 346- 355
[17]   李小雨, 许男, 郭孔辉 基于运动学方法和运动几何方法融合的质心侧偏角估计[J]. 机械工程学报, 2020, 56 (2): 121- 129
LI Xiaoyu, XU Nan, GUO Konghui Vehicle sideslip angle estimation based on fusion of kinematic method and kinematic-geometry method[J]. Journal of Mechanical Engineering, 2020, 56 (2): 121- 129
doi: 10.3901/JME.2020.02.121
[18]   高自群, 谢桂芝, 周兵, 等 多方法融合的汽车质心侧偏角估计[J]. 浙江大学学报: 工学版, 2023, 57 (12): 2391- 2400
GAO Ziqun, XIE Guizhi, ZHOU Bing, et al Estimation of vehicle sideslip angle based on multi-method fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (12): 2391- 2400
[19]   CHENG S, LI L, CHEN J Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (7): 5754- 5763
doi: 10.1109/TIE.2017.2774771
[20]   PARK G Vehicle sideslip angle estimation based on interacting multiple model Kalman filter using low-cost sensor fusion[J]. IEEE Transactions on Vehicular Technology, 2022, 71 (6): 6088- 6099
doi: 10.1109/TVT.2022.3161460
[21]   陈峥, 李磊磊, 舒星, 等 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35 (8): 20- 30
CHEN Zheng, LI Leilei, SHU Xing, et al Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35 (8): 20- 30
[1] Dihua LU,Shengzeng ZHOU,Ziqiang CHEN. Joint SOC-SOH estimation for UUV battery management system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1080-1090.
[2] Xiaoyong JIANG,Kaijian YING,Qiwei WU,Xuan WEI. Research overview on touchdown detection methods for footed robots[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 334-348.
[3] Zi-qun GAO,Gui-zhi XIE,Bing ZHOU,Yan XU,Xiao-jian WU,Tian CHAI. Estimation of vehicle sideslip angle based on multi-method fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2391-2400.
[4] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[5] CUI Ren-jie, MENG Tao, HUO Jun-hai, JIN Zhong-he. On-orbit calibration technique for residual magnetism fluctuation of micro-satellite[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2444-2450.
[6] WEI Chun-yu, ZHOU Xiao-jun, WEI Yan-ding, TANG Fang. Washout motion simulation in 6-DOF parallel platform based on Vortex[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1390-1396.
[7] LI Nan, ZHAO Guang-zhou. State estimation of freeway based on traffic flow hybrid model[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1846-1850.