Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1481-1491    DOI: 10.3785/j.issn.1008-973X.2025.07.016
    
Multi-objective constraint-based smooth path generation for UAVs global optimization method
Yuxin LIAO1(),Wei WANG1,*(),Weiming TENG2,Haiyan HE2,Zhan WANG3,Jin WANG4
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Zhejiang Baima Lake Laboratory Limited Company, Hangzhou 310051, China
3. Zhejiang Energy Digital Technology Limited Company, Hangzhou 310012, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2272KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Path planning in complex environments is fundamental to ensuring safe UAV operations. A global optimization method was proposed that comprehensively considered obstacle avoidance capability, flight efficiency, and stability constraints. The cylindrical envelope method was employed to standardize environmental data and obstacles, and the impact of UAV attitude variations on motion stability and flight efficiency was analyzed. Three optimization objectives—efficiency, obstacle avoidance, and stability—were established, expanding the optimization space from traditional one-dimensional or two-dimensional to three-dimensional. A reference-point-based non-dominated sorting genetic algorithm III (NSGA-III) was introduced to accelerate the search process in high-dimensional space, achieving approximately 49% faster convergence compared to the improved A* algorithm. A potential risk point detection mechanism was designed for obstacle avoidance, and a quintic B-spline was used to perform secondary optimization on the initial optimal path, enhancing the geometric characteristics and smoothness of the UAV trajectory. As a result, flight stability and efficiency were improved by 66.7% and 25%, respectively. The effectiveness of NSGA-III in trajectory planning was validated through simulations and experiments.



Key wordspath planning      multiple objectives      spline curve      trajectory smoothness      UAV     
Received: 11 June 2024      Published: 25 July 2025
CLC:  TP 242  
Fund:  国家自然科学基金资助项目(52405041);浙江省“尖兵领雁”资助项目(2023C01180);浙江省自然科学基金资助项目(LQ22E050022).
Corresponding Authors: Wei WANG     E-mail: lyxzstu@163.com;wangw@zstu.edu.cn
Cite this article:

Yuxin LIAO,Wei WANG,Weiming TENG,Haiyan HE,Zhan WANG,Jin WANG. Multi-objective constraint-based smooth path generation for UAVs global optimization method. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1481-1491.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1481


基于多目标约束的无人机光顺路径生成全局优化方法

复杂环境中的路径规划是无人机安全作业的基础,为此提出综合考虑避障能力、飞行效率和稳定性约束的全局优化方法. 采用柱面包络法对环境信息及障碍物进行规则化处理,分析无人机姿态变化对运动稳定性和飞行效率的潜在影响. 建立效率、避障和稳定性3个优化目标,将优化空间从传统的一维或二维提升到三维. 引入基于参考点的第三代非支配排序遗传算法 (NSGA-III)加速高维空间中的搜索过程,与改进的A*算法相比,收敛速度提高约49%. 针对障碍物设计潜在风险点判断机制,结合五次B样条对初始最优路径进行二次优化,改善无人机轨迹的几何特性及光顺性,使飞行稳定性及效率分别提高66.7%和25%. 通过仿真和实验验证NSGA-III在轨迹规划方面的有效性.


关键词: 路径规划,  多目标,  样条曲线,  轨迹平滑,  无人机 
Fig.1 Schematic diagram of flight path cost
Fig.2 Collision risk of UAVs
Fig.3 Two key parameters of UAV flight
Fig.4 Individuals classification based on dominated sorting
Fig.5 Reference point construction with hyperplane
Fig.6 Process of generating new populations
Fig.7 Optimisation flowchart of non-dominated sorting genetic algorithm III
Fig.8 Interpolation method using potential risk points as transition paths
Fig.9 Geometric relationship among path points and obstacles
编号坐标编号坐标编号坐标
Pr1(0.0,0.0,2.0)Pr6(0.5,0.0,1.5)Pr11(1.0,0.5,0.5)
Pr2(0.0,0.5,1.5)Pr7(0.5,0.5,1.0)Pr12(1.0,1.0,0.0)
Pr3(0.0,1.0,1.0)Pr8(0.5,1.0,0.5)Pr13(1.5,0.0,0.5)
Pr4(0.0,1.5,0.5)Pr9(0.5,1.5,0.0)Pr14(1.5,0.5,0.0)
Pr5(0.0,2.0,0.0)Pr10(1.0,1.0,0.0)Pr15(2.0,0.0,0.0)
Tab.1 Coordinates of reference points in hyperplane
Fig.10 Design of reference points
Fig.11 Simulation scenarios
场景算法$ {L}_{t,i} $/m$ {\varphi }_{L} $/%$ {N}_{t,i} $/s$ {\varphi }_{t} $/%$ {R}_{t,i} $$ {\varphi }_{r} $/%
场景一改进RRT*164.937.8348.43259.0871.68
改进A*156.25.2873.36914.93
NSGA-Ⅱ154.66.2535.7651.25108.2588.17
NSGA-Ⅲ149.79.2237.0349.52101.8588.87
场景二改进RRT*158.936.4333.08178.8943.96
改进A*157.50.8854.44319.23
NSGA-Ⅱ144.88.8724.0855.7629.0490.90
NSGA-Ⅲ144.09.3718.1666.6425.1992.11
场景三改进RRT*166.4237.3650.07262.9655.55
改进A*162.422.4074.83591.59
NSGA-Ⅱ153.917.5227.5963.1374.9787.33
NSGA-Ⅲ152.808.1824.2467.6170.2088.13
Tab.2 Performance comparison of different algorithms for optimization in three scenarios
Fig.12 Optimization iteration process of non-dominated sorting genetic algorithm
Fig.13 3D views of UAV flight paths in three scenarios with different algorithms
Fig.14 Top view of UAV flight paths in three scenarios with different algorithms
算法计算复杂度求解效率最优解搜寻能力
改进RRT*++++
改进A*+++++
NSGA-II+++++++++
NSGA-III++++++++++++
Tab.3 Qualitative description of characteristics for different algorithms
Fig.15 Distribution of optimal results for different non-dominated sorting genetic algorithms
Fig.16 UAV flight trajectory after secondary optimization (scenario 1)
Fig.17 Flight-time variation curve for initial optimal path
Fig.18 Flight-time variation curve for smooth path
Fig.19 Position variation curve of UAV flight path
Fig.20 Experimental platform of UAV
Fig.21 Diagram of UAV control system
Fig.22 UAV flight experimental results before and after optimization by non-dominated sorting genetic algorithm III
[1]   李明龙, 杨文婧, 易晓东, 等 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报, 2019, 55 (11): 1- 9
LI Minglong, YANG Wenjing, YI Xiaodong, et al Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering, 2019, 55 (11): 1- 9
doi: 10.3901/JME.2019.11.001
[2]   SHE R, OUYANG Y Efficiency of UAV-based last-mile delivery under congestion in low-altitude air[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102878
doi: 10.1016/j.trc.2020.102878
[3]   席志鹏, 楼卓, 李晓霞, 等 集中式光伏电站巡检无人机视觉定位与导航[J]. 浙江大学学报: 工学版, 2019, 53 (5): 880- 888
XI Zhipeng, LOU Zhuo, LI Xiaoxia, et al Vision-based localization and navigation for UAV inspection in photovoltaic farms[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (5): 880- 888
[4]   徐陶, 李雪, 祁雁楠, 等 水平棚架式梨树多旋翼无人机液体授粉试验[J]. 农业机械学报, 2023, 54 (Suppl.2): 136- 141
XU Tao, LI Xue, QI Yannan, et al Experiment on liquid pollination of pear tree with horizontal scaffolding based on multi-rotor UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (Suppl.2): 136- 141
[5]   KRISHNAN P S, MANIMALA K Implementation of optimized dynamic trajectory modification algorithm to avoid obstacles for secure navigation of UAV[J]. Applied Soft Computing, 2020, 90: 106168
doi: 10.1016/j.asoc.2020.106168
[6]   RAO J, XIANG C, XI J, et al Path planning for dual UAVs cooperative suspension transport based on artificial potential field-A* algorithm[J]. Knowledge-Based Systems, 2023, 277: 110797
doi: 10.1016/j.knosys.2023.110797
[7]   杨森, 张翔伦 基于能量优化的无人机机动轨迹生成方法[J]. 航空学报, 2020, 41 (Suppl.2): 724288
YANG Sen, ZHANG Xianglun Energy optimized maneuver trajectory generation for unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (Suppl.2): 724288
[8]   PHUNG M D, QUACH C H, DINH T H, et al Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection[J]. Automation in Construction, 2017, 81: 25- 33
doi: 10.1016/j.autcon.2017.04.013
[9]   ASLAN M F, DURDU A, SABANCI K Goal distance-based UAV path planning approach, path optimization and learning-based path estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-GDRRT[J]. Applied Soft Computing, 2023, 137: 110156
doi: 10.1016/j.asoc.2023.110156
[10]   PENG X, XU D, ZHANG F. UAV online path planning based on dynamic multiobjective evolutionary algorithm [C]// Proceedings of the 30th Chinese Control Conference. Yantai: IEEE, 2011: 5424–5429.
[11]   GUERRERO J A, BESTAOUI Y UAV path planning for structure inspection in windy environments[J]. Journal of Intelligent and Robotic Systems, 2013, 69 (1): 297- 311
[12]   PHUNG M D, HA Q P Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing, 2021, 107: 107376
doi: 10.1016/j.asoc.2021.107376
[13]   DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
[14]   YU X, JIANG N, WANG X, et al A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning[J]. Expert Systems with Applications, 2023, 215: 119327
doi: 10.1016/j.eswa.2022.119327
[15]   BASHIR N, BOUDJIT S, DAUPHIN G, et al An obstacle avoidance approach for UAV path planning[J]. Simulation Modelling Practice and Theory, 2023, 129: 102815
doi: 10.1016/j.simpat.2023.102815
[16]   LEE G, KIM K, JANG J Real-time path planning of controllable UAV by subgoals using goal-conditioned reinforcement learning[J]. Applied Soft Computing, 2023, 146: 110660
doi: 10.1016/j.asoc.2023.110660
[17]   GHAMBARI S, GOLABI M, LEPAGNOT J, et al. An enhanced NSGA-II for multiobjective UAV path planning in urban environments [C]// Proceedings of the IEEE 32nd International Conference on Tools with Artificial Intelligence. Baltimore: IEEE, 2020: 106–111.
[18]   TAVANA M, LI Z, MOBIN M, et al Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS[J]. Expert Systems with Applications, 2016, 50: 17- 39
doi: 10.1016/j.eswa.2015.11.007
[19]   GOEL U, VARSHNEY S, JAIN A, et al Three dimensional path planning for UAVs in dynamic environment using glow-worm swarm optimization[J]. Procedia Computer Science, 2018, 133: 230- 239
doi: 10.1016/j.procs.2018.07.028
[20]   ZHANG X, GUO Y, YANG J, et al Many-objective evolutionary algorithm based agricultural mobile robot route planning[J]. Computers and Electronics in Agriculture, 2022, 200: 107274
doi: 10.1016/j.compag.2022.107274
[21]   戴佳佳, 龚小溪, 汪俊 面向飞机外表面检测任务的无人机覆盖路径规划方法[J]. 机械工程学报, 2023, 59 (16): 243- 253
DAI Jiajia, GONG Xiaoxi, WANG Jun Coverage path planning method of unmanned aerial vehicle for aircraft surface detection task[J]. Journal of Mechanical Engineering, 2023, 59 (16): 243- 253
doi: 10.3901/JME.2023.16.243
[22]   WANG H, WANG J, DING G, et al Completion time minimization with path planning for fixed-wing UAV communications[J]. IEEE Transactions on Wireless Communications, 2019, 18 (7): 3485- 3499
doi: 10.1109/TWC.2019.2914203
[23]   鲜斌, 宋宁 基于模型预测控制与改进人工势场法的多无人机路径规划[J]. 控制与决策, 2024, 39 (7): 2133- 2141
XIAN Bin, SONG Ning A multiple UAVs path planning method based on model predictive control and improved artificial potential field[J]. Control and Decision, 2024, 39 (7): 2133- 2141
[1] Jun YE,Zhibin XIAO,Xiaoyang LIN,Guan QUAN,Zhen WANG,Yueda WANG,Jiangfei HE,Yang ZHAO. Optimization methods of 3D self-supporting truss structure based on muti-axis 3D printing[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1333-1343.
[2] Xinyu WEI,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG. High-precision real-time semantic segmentation network for UAV remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1411-1420.
[3] Kun HAO,Xuan MENG,Xiaofang ZHAO,Zhisheng LI. 3D underwater AUV path planning method integrating adaptive potential field method and deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1451-1461.
[4] Yu WANG,Chunrong MA,Mingyue ZHAO. Collaborative multi-task assignment of heterogeneous UAVs based on hybrid strategies based multi-objective particle swarm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 821-831.
[5] Shaomeng YU,Ming YAN,Pengfei WANG,Jianxi ZHU,Xin YANG. 3D path planning of plant protection UAVs in hilly mountainous orchards[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 635-642.
[6] Huijuan ZHANG,Kunpeng LI,Miaoxin JI,Zhenjiang LIU,Jianjuan LIU,Chi ZHANG. UAV detection algorithm based on spatial correlation enhancement[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 468-479.
[7] Tianmin DENG,Xinxin CHENG,Jinfeng LIU,Xiyue ZHANG. Small target detection algorithm for aerial images based on feature reuse mechanism[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 437-448.
[8] Yuting LIU,Shijie GUO,Shufeng TANG,Xuewei ZHANG,Tiantian LI. Path planning based on fusion of improved A* and ROA-DWA for robot[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 360-369.
[9] Lifang CHEN,Huogen YANG,Zhichao CHEN,Jie YANG. Global path planning with integration of B-spline technique and genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2520-2530.
[10] Xialu WEN,He HUANG,Huifeng WANG,Lan YANG,Tao GAO. Optimization of 3D multi-UAVs low altitude penetration based on bald eagle search algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2020-2030.
[11] Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.
[12] Jia-ao JIN,Hong-yao SHEN,Yang-fan SUN,Jia-hao LIN,Jing-ni CHEN. Single-line laser scanning path planning for wire arc and additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 21-31.
[13] Hai-jun WANG,Sheng-yan ZHANG,Yu-jie DU. UAV object tracking algorithm based on response and filter deviation-aware regularization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1824-1832.
[14] Wei-xiang XU,Nan KANG,Ting XU. Optimal path planning method based on travel plan data[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1542-1552.
[15] Xia HUA,Xin-qing WANG,Ting RUI,Fa-ming SHAO,Dong WANG. Vision-driven end-to-end maneuvering object tracking of UAV[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1464-1472.