Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1303-1310    DOI: 10.3785/j.issn.1008-973X.2025.06.021
    
Electrical capacitance tomography imaging of LNG inside pipes using deep neural networks based on flexible sensor
Zenan TIAN(),Xinxin GAO,Xiaobin ZHANG*()
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1901KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The flexible sensor is an effective solution to solve the failure of conventional sensors at cryogenic conditions. The electrical capacitance tomography (ECT) phase distribution imaging system for cryogenic two-phase flow was focused on. The sampling stability of flexible sensors based on flexible circuit boards was compared with that of traditional patch sensors. A deep neural network (DNN-LNG) was trained to measure the phase distribution of LNG- saturated methane vapor two phase flow. Numerical simulation experiments were conducted to evaluate the model by comparing it with traditional algorithms. Alternative working medium experiments were conducted to compare the two sensor schemes, and the flexible sensor with a better imaging effect was selected to combine with DNN-LNG. A room-temperature experiment was conducted to substitute polypropylene-air as LNG-saturated methane vapor two-phase flow, testing the performance of the flexible sensor and DNN-LNG algorithm in imaging complex flow patterns. And then the liquid nitrogen imaging test was conducted. Results show that flexible sensors can effectively improve the sampling stability and inversion accuracy of ECT system phase distribution, and its standardized design and manufacturing process as well as the stable high installation accuracy provide a solution for the large-scale manufacturing of ECT sensors. The DNN-LNG imaging network can greatly eliminate artifacts and distortions, and obtain clear and accurate imaging results. The combination of flexible sensors and DNN-LNG imaging method has broad application prospects in LNG two-phase flow imaging.



Key wordselectrical capacitance tomography      flexible printed circuit      neural network      cryogenics      liquified natural gas (LNG)     
Received: 25 April 2024      Published: 30 May 2025
CLC:  TP 393  
Fund:  浙江省自然科学基金资助项目(LBMHY25A020002);国家重点研发计划资助项目(2022YFB4002900).
Corresponding Authors: Xiaobin ZHANG     E-mail: tian_zenan@zju.edu.cn;zhangxbin@zju.edu.cn
Cite this article:

Zenan TIAN,Xinxin GAO,Xiaobin ZHANG. Electrical capacitance tomography imaging of LNG inside pipes using deep neural networks based on flexible sensor. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1303-1310.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.021     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1303


基于柔性传感器的管内LNG电容层析深度神经网络成像

聚焦低温两相流的电容层析成像(ECT)相分布反演系统,对基于柔性电路板的柔性传感器与传统贴片传感器的采样稳定性进行对比. 训练适用于LNG-饱和甲烷蒸汽两相流相分布测量场景的深度神经网络(DNN-LNG). 就此算法开展数值模拟实验,将成像结果与传统算法结果对比,以评估算法性能. 进行替代工质实验,比较2个传感器方案,选择成像效果更好的柔性传感器与DNN-LNG组合,开展常温实验. 利用聚丙烯-空气替代LNG-饱和甲烷蒸汽两相流,检验柔性传感器与DNN-LNG算法在实际复杂流型成像应用中的性能,以此为基础进行液氮成像. 结果表明,柔性传感器能有效提升ECT系统相分布采样稳定性与反演精度,且其标准化的设计制造流程以及稳定的高安装精度能为ECT传感器的规模化制造提供解决方案. DNN-LNG成像网络能够极大消除伪影和畸变,并能获得清晰准确的成像结果. 柔性传感器与DNN-LNG成像方法的组合在LNG两相流成像方面具有广阔的应用前景.


关键词: 电容层析成像,  柔性电路板,  神经网络,  低温学,  液化天然气(LNG) 
Fig.1 Image reconstruction system based on flexible sensor
Fig.2 Two ECT sensor solutions
Fig.3 Patch solution sensor for rewarming after soaking in liquid nitrogen
Fig.4 Computation domain of ECT pipeline cross section
Fig.5 Scheme of DNN-LNG
流体对相对介电常数
水/空气 (300 K)77.747/1.0005
聚丙烯颗粒/空气(300 K)1.6201/1.0005
液氮/饱和氮蒸汽(78 K)1.4337/1.0021
液氧/饱和氧蒸汽(90 K)1.4877/1.0016
LNG/饱和甲烷蒸汽(112 K)1.6299/1.0020
Tab.1 Relative permittivity of different fluid pairs
Fig.6 Training samples of DNN-LNG
Fig.7 Comparison of measurement results between FPC sensor and patch sensor
Fig.8 Results of flow patterns in numerical experiment
流型算法IE/%CC
环状流LBP46.390.85
Landweber39.290.88
DNN-LNG19.400.97
层流LBP30.180.91
Landweber25.170.93
DNN-LNG11.820.98
柱状流LBP89.890.47
Landweber81.450.59
DNN-LNG25.010.97
Tab.2 Image error and correlation coefficient of inversion images of each flow pattern in numerical experiment
Fig.9 Imaging results of each flow pattern measured by patch sensor
Fig.10 Imaging results of each flow pattern measured by FPC sensor
流型算法IE/%CC
环状流LBP54.760.74
Landweber39.250.85
DNN-LNG12.710.97
层流LBP29.340.89
Landweber26.840.90
DNN-LNG17.630.96
柱状流LBP54.140.82
Landweber41.380.85
DNN-LNG20.550.98
Tab.3 Image error and correlation coefficient of inversion images measured by patch sensor for each flow pattern
流型算法IE/%CC
环状流LBP40.500.78
Landweber32.910.82
DNN-LNG17.490.97
层流LBP29.620.93
Landweber23.550.95
DNN-LNG15.050.98
柱状流LBP45.010.79
Landweber37.050.87
DNN-LNG14.890.97
Tab.4 Image error and correlation cofficient of inversion images measured by flexible sensors for each flow pattern
Fig.11 Imaging results for LN2-VN2 flow by FPC sensor
[1]   YANG Z Q, CHEN G F, ZHUANG X R, et al A new flow pattern map for flow boiling of R1234ze(E) in a horizontal tube[J]. International Journal of Multiphase Flow, 2018, 98: 24- 35
doi: 10.1016/j.ijmultiphaseflow.2017.08.015
[2]   FORTE G, CLARK P J, YAN Z, et al Using a Freeman FT4 rheometer and Electrical Capacitance Tomography to assess powder blending[J]. Powder Technology, 2018, 337: 25- 35
doi: 10.1016/j.powtec.2017.12.020
[3]   CHEN J, WANG Y, ZHANG W, et al Capacitance-based liquid holdup measurement of cryogenic two-phase flow in a nearly-horizontal tube[J]. Cryogenics, 2017, 84: 69- 75
doi: 10.1016/j.cryogenics.2017.04.006
[4]   KHALIL A, MCINTOSH G, BOOM R W Experimental measurement of void fraction in cryogenic two phase upward flow[J]. Cryogenics, 1981, 21 (7): 411- 414
doi: 10.1016/0011-2275(81)90174-0
[5]   FILIPPOV Y P, KOVRIZHNYKH A M, MIKLAYEV V M, et al Metrological systems for monitoring two-phase cryogenic flows[J]. Cryogenics, 2000, 40 (4/5): 279- 285
[6]   HARADA K, MURAKAMI M, ISHII T PIV measurements for flow pattern and void fraction in cavitating flows of He II and He I[J]. Cryogenics, 2006, 46 (9): 648- 657
doi: 10.1016/j.cryogenics.2006.03.002
[7]   戴俊 电容法在多相流参数测量领域的应用开发[J]. 船舶工程, 2015, 37 (12): 47- 51
DAI Jun Application development of the capacitance method to measure the multiphase flow parameter[J]. Ship Engineering, 2015, 37 (12): 47- 51
[8]   CHE H Q, YE J M, TU Q Y, et al Investigation of coating process in Wurster fluidised bed using electrical capacitance tomography[J]. Chemical Engineering Research and Design, 2018, 132: 1180- 1192
doi: 10.1016/j.cherd.2018.02.015
[9]   MOHAMAD E J, RAHIM R A, RAHIMAN M H F, et al Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor[J]. Flow Measurement and Instrumentation, 2016, 47: 62- 70
doi: 10.1016/j.flowmeasinst.2015.12.004
[10]   DO NASCIMENTO WRASSE A, DOS SANTOS E N, DA SILVA M J, et al Capacitive sensors for multiphase flow measurement: a review[J]. IEEE Sensors Journal, 2022, 22 (22): 21391- 21409
doi: 10.1109/JSEN.2022.3210467
[11]   马敏, 王涛 基于CNN-MSLSTM的航空发动机滑油监测方法研究[J]. 计量学报, 2021, 42 (2): 232- 238
MA Min, WANG Tao Research on monitoring method of aeroengine lubricating oil based on CNN-MSLSTM[J]. Acta Metrologica Sinica, 2021, 42 (2): 232- 238
[12]   XIE C G, HUANG S M, BECK M S, et al Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors[J]. IEE Proceedings G Circuits, Devices and Systems, 1992, 139 (1): 89
doi: 10.1049/ip-g-2.1992.0015
[13]   YANG W Q, SPINK D M, YORK T A, et al An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10 (11): 1065- 1069
doi: 10.1088/0957-0233/10/11/315
[14]   MARASHDEH Q, WARSITO W, FAN L S, et al A nonlinear image reconstruction technique for ECT using a combined neural network approach[J]. Measurement Science and Technology, 2006, 17 (8): 2097- 2103
doi: 10.1088/0957-0233/17/8/007
[15]   ZHAO J, FU W, LI T, et al Image reconstruction new algorithm for electrical capacitance tomography[J]. Computer Engineering, 2004, 30 (8): 54- 56,82
[16]   LIU X, WANG X, HU H, et al An extreme learning machine combined with Landweber iteration algorithm for the inverse problem of electrical capacitance tomography[J]. Flow Measurement and Instrumentation, 2015, 45: 348- 356
doi: 10.1016/j.flowmeasinst.2015.07.009
[17]   DEABES W, KHAYYAT K M J Image reconstruction in electrical capacitance tomography based on deep neural networks[J]. IEEE Sensors Journal, 2021, 21 (22): 25818- 25830
doi: 10.1109/JSEN.2021.3116164
[18]   JOHANSEN R. Machine learning algorithms in multiphase flow regime identification using electrical capacitance tomography [D]. Kongsberg: University of South-Eastern Norway, 2018.
[19]   ZHENG J, MA H, PENG L. A CNN-based image reconstruction for electrical capacitance tomography [C]// IEEE International Conference on Imaging Systems and Techniques. Abu Dhabi: IEEE, 2019: 1–6.
[20]   王子辰, 陈晓艳, 王倩, 等 基于残差自注意力连接的深度电学层析成像方法[J]. 仪器仪表学报, 2023, 44 (5): 288- 300
WANG Zichen, CHEN Xiaoyan, WANG Qian, et al Electrical tomography imaging method based on deep CNN with residual self-attention skip connection[J]. Chinese Journal of Scientific Instrument, 2023, 44 (5): 288- 300
[21]   XIE H, CHEN H, GAO X, et al Theoretical analysis of fuzzy least squares support vector regression method for void fraction measurement of two-phase flow by multi-electrode capacitance sensor[J]. Cryogenics, 2019, 103: 102969
doi: 10.1016/j.cryogenics.2019.07.008
[22]   XIA T, XIE H, WEI A, et al Preliminary study on three-dimensional imaging of cryogenic two-phase flow based on electrical capacitance volume tomography[J]. Cryogenics, 2020, 110: 103127
doi: 10.1016/j.cryogenics.2020.103127
[23]   TIAN Z N, GAO X X, QIU L M, et al Experimental imaging and algorithm optimization based on deep neural network for electrical capacitance tomography for LN2-VN2 flow[J]. Cryogenics, 2022, 127: 103568
doi: 10.1016/j.cryogenics.2022.103568
[1] Yan YANG,Lipeng CHAO. A two-branch feature joint dehazing network based on multidimensional collaborative attention[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1119-1129.
[2] Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
[3] Shuang WANG,Shousuo SUN,Yongcun GUO,Zeyong HU. Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1007-1017.
[4] Mengyao ZHANG,Jie ZHOU,Wenting LI,Yong ZHAO. Three-dimensional mesh segmentation framework using global and local information[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 912-919.
[5] Xinyu QIAN,Qinglin XIE,Gongquan TAO,Zefeng WEN. Quantitative identification method of wheel flats based on multi-structured data-driven[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 688-697.
[6] Pei YUAN,Junxia JIANG,Fei MA,Jiefeng JIN,Jianliang LAI. Monitoring for cold extrusion cutting tools in nuclear environment based on PCA and auto associative neural network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 606-615.
[7] Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.
[8] Bing YANG,Chuyang XU,Jinliang YAO,Xueqin XIANG. 3D hand pose estimation method based on monocular RGB images[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 18-26.
[9] Fei WU,Jiacheng CHEN,Wanliang WANG. Review on computational intelligence based on parallel computing[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 27-38.
[10] Lingxuan LAI,Jingqing LIU,Yisu ZHOU,Xiujuan LI. Identification of leakage in water supply pipelines based on time-frequency convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 196-204.
[11] Haijun WANG,Tao WANG,Cijun YU. CFRP ultrasonic detection defect identification method based on recursive quantitative analysis[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1604-1617.
[12] Jinye LI,Yongqiang LI. Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1366-1376.
[13] Man XU,Dongmei ZHANG,Xiang YU,Jiang LI,Yiping WU. Improved GRU landslide displacement prediction model based on multifractal[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1407-1416.
[14] Juan SONG,Longxi HE,Huiping LONG. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1161-1173.
[15] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.