Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1407-1416    DOI: 10.3785/j.issn.1008-973X.2024.07.010
    
Improved GRU landslide displacement prediction model based on multifractal
Man XU1(),Dongmei ZHANG1,Xiang YU1,Jiang LI2,*(),Yiping WU3
1. School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
2. Information Center, Department of Natural Resources of Hubei Province, Wuhan 430071, China
3. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
Download: HTML     PDF(2282KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional memory network model has poor prediction accuracy on a non-stationary mutation data segment due to the gate mechanism has difficulty in learning sequence change trends. A multifractal algorithm was introduced to improve the gating control of the gated recurrent unit (GRU), and dynamically update the gating weight by quantifying the change characteristics of the sequence. The state fusion of the recurrent neural network unit was introduced to learn the long-range correlation of data. The landslide cumulative displacement was decomposed into trend term, periodic term and random term through the variational mode decomposition algorithm. The decomposed terms were trained and predicted by using the improved GRU. The monitoring points ZG93 and ZG118 of the Baishuihe landslide in the Three Gorges Reservoir area were selected for simulation experiments. Experimental results show that compared with traditional models, the new model learns the characteristics of the landslide displacement deformation trend better and has a higher prediction accuracy.



Key wordslandslide cumulative displacement      multifractal      gated recurrent unit (GRU)      variational mode decomposition      recurrent neural network     
Received: 26 June 2023      Published: 01 July 2024
CLC:  P 642  
Fund:  国家自然科学基金联合基金重点支持项目(U1911205);湖北省自然资源厅科技项目(ZRZY2024KJ22).
Corresponding Authors: Jiang LI     E-mail: xuman@cug.edu.cn;johnlee1124@126.com
Cite this article:

Man XU,Dongmei ZHANG,Xiang YU,Jiang LI,Yiping WU. Improved GRU landslide displacement prediction model based on multifractal. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1407-1416.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1407


基于多重分形的改进GRU滑坡位移预测模型

门控机制设计难以学习序列变化趋势,导致传统记忆网络模型对滑坡位移非平稳跃变段预测效果较差. 基于多重分形改进门控循环单元(GRU),通过量化序列的变化特征来动态更新门控权重,引入循环神经网络单元的状态融合策略以学习数据的长程相关性特征. 采用变分模态分解算法将滑坡累积位移分解成趋势项、周期项及随机项,利用改进GRU进行位移分量的训练和预测. 选取三峡库区白水河滑坡监测点ZG93、ZG118进行仿真实验. 实验结果表明,相比传统预测模型,新模型的滑坡位移形变趋势特征学习能力更强,预测精度更高.


关键词: 滑坡累积位移,  多重分形,  门控循环单元(GRU),  变分模态分解,  循环神经网络 
Fig.1 Principles of gated recurrent unit
Fig.2 Structure of improved gated recurrent unit based on multifractal
Fig.3 State fusion of recurrent neural network
Fig.4 Flow chart of landslide displacement prediction
Fig.5 Geological overview map of Baishuihe landslide[4]
序列长度RMSE/mm序列长度RMSE/mm
60.0896140.1346
80.0844160.0852
100.0836180.0885
120.0809
Tab.1 Root mean square error of prediction results under different input window settings
参数取值参数取值
VMD分量数k3迭代次数1200
批处理数量256学习率0.001
隐藏层节点数64隐藏层层数1
Tab.2 Comparative experiment parameter settings
Fig.6 Cumulative displacement-time curves for different monitoring points
Fig.7 Cumulative displacement-time curve and spectral width-time curve for monitoring point ZG118
Fig.8 Curves of landslide displacement component-time for monitoring point ZG118
Fig.9 Reservoir water level-time curve and periodic term-time curve for monitoring point ZG118
Fig.10 Curves of periodic term, random term and corresponding spectral width with time at monitoring point ZG118
Fig.11 Prediction curves of different models for landslide displacement components
Fig.12 Prediction curves of different models for periodic term and random term in mutation data segment
模型名称位移分量ZG93ZG118
$ {R}^{2} $RMSE/mmMAPE$ {R}^{2} $RMSE/mmMAPE
RNN趋势项0.992 796.287 050.002 7740.999 932.133 970.002 884
周期项0.999 980.129 220.011 5070.999 930.258 550.020 789
随机项0.999 940.083 460.011 1830.999 720.179 330.014 161
LSTM趋势项0.990 287.302 500.003 3170.988 838.230 300.003 849
周期项0.999 950.198 840.011 3590.999 760.478 830.040 156
随机项0.999 580.229 680.109 0910.998 180.460 150.155 724
GRU趋势项0.989 887.451 830.003 2460.991 477.192 230.003 231
周期项0.999 980.121 790.006 5910.999 530.667 300.057 643
随机项0.999 910.108 200.035 7210.999 840.134 400.016 579
MF-SF-GRU趋势项0.999 870.851 840.000 3460.999 781.142 170.000 433
周期项0.999 990.074 580.004 7570.999 990.061 810.008 133
随机项0.999 950.080 110.023 1860.999 950.075 120.009 470
Tab.3 Prediction accuracy and error of landslide displacement components for different models
Fig.13 Prediction curves for overall data segment of cumulative displacement with different models
Fig.14 Prediction curves for mutation data segment of cumulative displacement with different models
模型名称ZG93ZG118
R2RMSE/mmMAPER2RMSE/mmMAPE
RNN0.995 386.196 620.002 7230.995 786.211 990.002 776
LSTM0.993 527.335 840.003 3360.994 117.339 750.003 401
GRU0.993 367.427 080.003 2280.993 087.951 100.003 557
MF-SF-GRU0.999 910.856 160.000 3490.999 851.175 090.000 437
Tab.4 Prediction accuracy and error of cumulative displacement for different models
模型名称ZG93ZG118
R2RMSE/mmMAPER2RMSE/mmMAPE
RNN0.772 095.797 980.002 6900.715 175.649 480.002 697
LSTM0.656 667.116 380.003 3160.570 336.938 820.003 401
GRU0.674 736.926 570.003 2060.526 957.280 730.003 334
MF-SF-GRU0.998 110.528 220.000 1920.994 880.757 120.000 314
Tab.5 Prediction accuracy and error of cumulative displacement for partial mutation data segment with different models
[1]   叶润青, 付小林, 郭飞, 等 三峡水库运行期地质灾害变形特征及机制分析[J]. 工程地质学报, 2021, 29 (3): 680- 692
YE Runqing, FU Xiaolin, GUO Fei, et al Deformation characteristics and mechanism analysis of geological hazards during operation period of Three Gorges Reservoir[J]. Journal of Engineering Geology, 2021, 29 (3): 680- 692
[2]   李骅锦, 许强, 何雨森, 等 “阶跃式” 滑坡位移预测及阈值分析的 ARMA-(LASSO-ELM)-Copula模型[J]. 岩石力学与工程学报, 2017, 36 (Suppl.2): 4075- 4084
LI Huajin, XU Qiang, HE Yusen, et al An ARMA-(LASSO-ELM)-Copula farmework for landslide displacement prediction and threshold computing of the displacement of step-like landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (Suppl.2): 4075- 4084
[3]   许强, 汤明高, 徐开祥, 等 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27 (6): 1104- 1112
XU Qiang, TANG Minggao, XU Kaixiang, et al Research on space-timeevolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (6): 1104- 1112
doi: 10.3321/j.issn:1000-6915.2008.06.003
[4]   李麟玮, 吴益平, 苗发盛, 等 基于变分模态分解与 GWO-MIC-SVR 模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37 (6): 1395- 1406
LI Linwei, WU Yiping, MIAO Fasheng, et al Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (6): 1395- 1406
[5]   张俊, 殷坤龙, 王佳佳, 等 基于时间序列与 PSO-SVR 耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34 (2): 382- 391
ZHANG Jun, YIN Kunlong, WANG Jiajia, et al Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (2): 382- 391
[6]   XU S, NIU R Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers and Geosciences, 2018, 111: 87- 96
doi: 10.1016/j.cageo.2017.10.013
[7]   徐峰, 范春菊, 徐勋建, 等 基于变分模态分解和 AMPSO-SVM 耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52 (10): 1388- 1395
XU Feng, FAN Chunju, XU Jianxun, et al Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (10): 1388- 1395
[8]   陈伟, 雷帮军, 黄海峰 基于门控循环单元的滑坡位移预测和灾害预警方法[J]. 长江信息通信, 2021, 34 (5): 19- 21
CHEN Wei, LEI Bangjun, HUANG Haifeng Landslide displacement prediction and disaster early warning method based on gated recurrent unit[J]. Changjiang Information and Communication, 2021, 34 (5): 19- 21
doi: 10.3969/j.issn.1673-1131.2021.05.006
[9]   黄发明, 殷坤龙, 杨背背, 等 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测[J]. 地球科学, 2018, 43 (3): 887- 898
HUANG Faming, YIN Kunlong, YANG Beibei, et al Step-like displacement prediction of landslide based on time series decomposition and multivariate chaos model[J]. Earth Science, 2018, 43 (3): 887- 898
[10]   徐峰, 汪洋, 杜娟, 等 基于时间序列分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2011, 30 (4): 746- 751
XU Feng, WANG Yang, DU Juan, et al Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (4): 746- 751
[11]   朱治军, 李后强 小波分析在分形科学中的应用[J]. 应用基础与工程科学学报, 1994, 2 (4): 275- 281
ZHU Zhijun, LI Houqiang Application of wavelet analysis in fractals[J]. Journal of Applied Basic and Engineering Science, 1994, 2 (4): 275- 281
[12]   林大超, 安凤平, 郭章林, 等 滑坡位移的多模态支持向量机模型预测[J]. 岩土力学, 2011, 32 (Suppl.1): 451- 458
LIN Dachao, AN Fengping, GUO Zhanglin, et al Prediction of landslide displacements through multimode support vector machine model[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.1): 451- 458
[13]   邓冬梅. 基于集合经验模态分解的水库库岸滑坡阶跃型位移预测研究[D]. 武汉: 中国地质大学, 2018.
DENG Dongmei. Study of stepwise displacement prediction for reservoir landslides based on ensemble empirical mode decomposition [D]. Wuhan: China University of Geosciences, 2018.
[14]   李麟玮, 吴益平, 苗发盛, 等 考虑变形状态动态切换的阶跃型滑坡位移区间预测方法[J]. 岩石力学与工程学报, 2019, 38 (11): 2272- 2287
LI Linwei, WU Yiping, MIAO Fasheng, et al Displacement interval prediction method for step-like landslides considering deformation state dynamic switching[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (11): 2272- 2287
[15]   易利容, 王绍宇, 殷丽丽, 等 基于多变量 LSTM 的工业传感器时序数据预测[J]. 智能计算机与应用, 2018, 8 (5): 13- 16
YI Lirong, WANG Shaoyu, YIN Lili, et al Forecasting of industrial sensor time series based on multivariable LSTM[J]. Intelligent Computer and Applications, 2018, 8 (5): 13- 16
doi: 10.3969/j.issn.2095-2163.2018.05.003
[16]   HOCHREITER S. Untersuchungen zu dynamischen neuronalen Netzen [D]. Munich: Technical University of Munich, 1991. HOCHREITER S. Investigations on dynamic neural networks [D]. Munich: Technical University of Munich, 1991.
[17]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[18]   CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]/ / Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724–1734.
[19]   管孝艳, 杨培岭, 吕烨 基于多重分形理论的农田土壤特性空间变异性分析[J]. 应用基础与工程科学学报, 2011, 19 (5): 712- 720
GUAN Xiaoyan, YANG Peiling, LV Ye Analysis on spatial variability of soil properties based on multifractal theory[J]. Journal of Basic Science and Engineering, 2011, 19 (5): 712- 720
doi: 10.3969/j.issn.1005-0930.2011.05.003
[20]   ZHOU, G B, WU J, ZHANG C L, et al Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13 (3): 226- 234
doi: 10.1007/s11633-016-1006-2
[21]   张振坤, 张冬梅, 李江, 等 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学, 2022, 43 (Suppl.2): 477- 486
ZHANG Zhenkun, ZHANG Dongmei, LI Jiang, et al LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics, 2022, 43 (Suppl.2): 477- 486
[22]   刘艺梁, 殷坤龙, 汪洋, 等 基于经验模态分解和神经网络的滑坡变形预测研究[J]. 安全与环境工程, 2013, 20 (4): 14- 17
LIU Yiliang, YIN Kunlong, WANG Yang, et al Study of landslide deformation prediction based on EMD and neural network[J]. Safety and Environmental Engineering, 2013, 20 (4): 14- 17
doi: 10.3969/j.issn.1671-1556.2013.04.004
[1] Xianglong LUO,Yafei WANG,Yanbo WANG,Lixin WANG. Structural deformation prediction of monitoring data based on bi-directional gate board learning system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 729-736.
[2] Fan XIONG,Tian CHEN,Bai-cheng BIAN,Jun LIU. Chip surface character recognition based on convolutional recurrent neural network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 948-956.
[3] Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.
[4] Hong-zhao DONG,Zhen WANG,Nan ZHANG,Yi-ni SHE,Ying-ying LIN. Seq2Seq prediction method of state of charge of electric bus battery[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2051-2059.
[5] Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.
[6] Mao-xia RAN,Qin-yuan HUANG,Xin LIU,Hong SONG,Hao WU. Internal defect detection of arc magnets based on optimized variational mode decomposition[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2158-2168.
[7] Ji-jun TONG,Yan-jie BAI,Jian-wei PAN,Jia-feng YANG,Lu-rong JIANG. Ballistocardiogram and respiratory signal separation based on variational mode decomposition[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2058-2066.
[8] Jing-chang WANG,Ling CHEN,Shan-shan YU,Chen-shu JIANG,Yong WU. Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2357-2364.