Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 2058-2066    DOI: 10.3785/j.issn.1008-973X.2020.10.024
    
Ballistocardiogram and respiratory signal separation based on variational mode decomposition
Ji-jun TONG1(),Yan-jie BAI1,Jian-wei PAN2,Jia-feng YANG1,Lu-rong JIANG1,*()
1. School of Information Sciences and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Department of Neurosurgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
Download: HTML     PDF(5793KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A resistive film pressure sensor was embedded in the mattress, and the variational modal decomposition (VMD) algorithm was introduced into the two-dimensional physiological signal extraction process in order to monitor the ballistocardiogram (BCG) and respiratory signal in a non-invasive manner during sleep. The VMD algorithm was used to decompose the potential components of the BCG signal and respiratory signal in the physiological signal after the signal passes through the flexible pressure sensor in the mattress, hardware low-pass filtering, and digital detrending (DFA). The effective components were adaptively selected to reconstruct the BCG signal and the respiratory signal. The instantaneous frequencies of VMD, empirical mode decomposition (EMD), and complementary set empirical mode decomposition (CEEMD) components were compared based on Hilbert transform. The aliasing situation of VMD in 0~3.0 Hz was improved compared with EMD and CEEMD. The Bland-Altman method was used to evaluate the consistency of the standard results and experimental reconstruction results. Results show that 93.75% and 92.5% of the BCG and respiratory signals obtained by the VMD method are within the standard limit of 95% consistency, and there is a high consistency.



Key wordsballistocardiogram (BCG)      variational mode decomposition (VMD)      flexible pressure sensor      non-invasive manner      Bland-Altman     
Received: 17 September 2019      Published: 28 October 2020
CLC:  R 318  
Corresponding Authors: Lu-rong JIANG     E-mail: jijuntong@zstu.edu.cn;jianglurong@zstu.edu.cn
Cite this article:

Ji-jun TONG,Yan-jie BAI,Jian-wei PAN,Jia-feng YANG,Lu-rong JIANG. Ballistocardiogram and respiratory signal separation based on variational mode decomposition. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2058-2066.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.024     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/2058


基于变分模态分解的心冲击信号和呼吸信号分离

为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程. 信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号. 基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善. 采用Bland-Altman法,对标准结果和实验重构结果进行一致性评价. 结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性.


关键词: 心冲击信号(BCG),  变分模态分解(VMD),  柔性压力传感器,  非入侵方式,  Bland-Altman 
Fig.1 Typical BCG signal
Fig.2 Flow chart of physiological signal decomposition and reconstruction
Fig.3 Physiological signal acquisition device
Fig.4 Comparison of original signal before and after detrending
Fig.5 
Fig.5 Comparison of decomposition results in different algorithms
Fig.6 Comparison of Hilbert-Huang spectra after decomposition in different algorithms
分量 Pb
1 2 3 4 5 6 7 8 9 10
EMD呼吸能量 0.000 8 0.010 2 0.011 0 0.044 5 0.128 3 0.820 7 0.576 9 0.132 6 0.002 2 0.001 2
EMD心冲击能量 0.014 5 0.140 1 0.415 8 0.577 7 0.280 7 0.046 5 0.112 3 0.136 9 0.003 6 0.002 1
CEEMD呼吸能量 0.001 4 0.002 7 0.011 6 0.085 0 0.901 7 0.621 5 0.119 0 0.001 8 0.001 6 0.000 9
CEEMD心冲击能量 0.014 2 0.212 4 0.442 4 0.388 2 0.171 6 0.168 5 0.130 0 0.009 0 0.000 5 0.000 4
VMD呼吸能量 0.858 1 0.251 7 0.004 8 0.002 3 0.000 6 0.000 3 0.000 2 0.000 2 0.000 1 0.000 1
VMD心冲击能量 0.105 3 0.111 6 0.394 0 0.318 9 0.303 7 0.068 5 0.021 2 0.008 1 0.003 9 0.001 1
Tab.1 Analysis of physiological signal energy ratio
Fig.7 Analysis of physiological signal energy ratio
Fig.8 Comparison of reconstruction effect in different decomposition algorithms
Fig.9 Consistency analysis based on Bland-Altman method
[1]   BROWN J H R, HOFFMAN M J, DE LALLA J V Ballistocardiographic findings in patients with symptoms of angina pectoris[J]. Circulation, 1950, 1 (1): 132- 140
doi: 10.1161/01.CIR.1.1.132
[2]   MOUKADEM A, FINNAOUI A, GASSARA H E, et al. Time-frequency domain for BCG analysis [C] // 2018 International Conference on Computer and Applications. Lebanon: ICCA, 2018: 226-230.
[3]   马莹, 王云峰, 张海英, 等 基于压电薄膜传感器的心率呼吸率实时监测[J]. 传感器与微系统, 2018, 37 (6): 119- 121
MA Ying, WANG Yun-feng, ZHANG Hai-ying, et al Real-time monitoring of heart rate and respiratory rate based on piezoelectric thin-film sensor[J]. Transducer and Microsystem Technologies, 2018, 37 (6): 119- 121
[4]   沈劲鹏, 王新安 适用于床垫式生理信号监测系统的信号处理方法[J]. 北京大学学报: 自然科学版, 2018, 54 (5): 921- 926
SHEN Jin-peng, WANG Xin-an Signal processing method for mattress-type physiological monitoring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (5): 921- 926
[5]   HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
[6]   WU Z, HUANG N E, CHEN X The multi-dimensional ensemble empirical mode decomposition method[J]. Advances in Adaptive Data Analysis, 2009, 1 (3): 339- 372
doi: 10.1142/S1793536909000187
[7]   WU Z, HUANG N E Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1 (1): 1- 41
doi: 10.1142/S1793536909000047
[8]   姜星, 耿读艳, 张园园, 等 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38 (2): 139- 148
JIANG Xing, GENG Du-yan, ZHANG Yuan-yuan, et al BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38 (2): 139- 148
[9]   杨丹, 徐彬, 叶琳琳, 等 心脏心冲击信号降噪方法研究[J]. 生物医学工程学杂志, 2014, 31 (6): 1368- 1372
YANG Dan, XU Bin, YE Lin-lin, et al De-noising method research of ballistocardiogram signal[J]. Journal of Biomedical Engineering, 2014, 31 (6): 1368- 1372
[10]   贾瑞生, 赵同彬, 孙红梅, 等 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58 (3): 1013- 1023
JIA Rui-sheng, ZHAO Tong-bin, SUN Hong-mei, et al Micro-seismic signal denoising method based on empirical mode decomposition amd independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58 (3): 1013- 1023
[11]   徐信, 李志华, 杨越 基于EMD-ICA的激电数据降噪处理方法[J]. 计算机应用研究, 2017, 34 (6): 1737- 1739
XU Xin, LI Zhi-hua, YANG Yue De-noising of ip data based on EMD-ICA[J]. Application Research of Computers, 2017, 34 (6): 1737- 1739
[12]   YEH J R, SHIEH J S, HUANG N E Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2 (2): 135- 156
doi: 10.1142/S1793536910000422
[13]   SMITH J S The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2 (5): 443- 454
doi: 10.1098/rsif.2005.0058
[14]   DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62 (3): 531- 544
[15]   RAJ S, RAY K C. Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis [C] // 2017 7th International Symposium on Embedded Computing and System Design. Durgapur, India: IEEE, 2017: 1-5.
[16]   ALVARADO S C, LUNA L P S, PALLàS A R An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform[J]. Biomedical Signal Processing and Control, 2016, 27: 96- 102
doi: 10.1016/j.bspc.2016.02.002
[17]   HUANG N E. Hilbert-Huang transform and its applications [M]. Singapore: World Scientific, 2014.
[18]   LI X, LI Z, WANG E, et al Analysis of natural mineral earthquake and blast based on Hilbert–Huang transform (HHT)[J]. Journal of Applied Geophysics, 2016, 128: 79- 86
doi: 10.1016/j.jappgeo.2016.03.024
[19]   苗晟, 王威廉, 姚绍文 Hilbert-Huang 变换发展历程及其应用[J]. 电子测量与仪器学报, 2014, 28 (8): 812- 818
MIAO Sheng, WANG Wei-lian, YAO Shao-wen Historic development of HTT and its applications[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28 (8): 812- 818
[20]   GIAVARINA D Understanding bland Altman analysis[J]. Biochemia Medica, 2015, 25 (2): 141- 151
doi: 10.11613/BM.2015.015
[1] Hui XIONG,Zhao JING,Jin-zhen LIU. Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 793-800.
[2] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[3] Yan-jia HONG,Tie-bao MENG,Hao-jiang LI,Li-zhi LIU,Li LI,Shuo-yu XU,Sheng-wen GUO. Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 566-573.
[4] Yi YANG,Xu-sheng QIAN,Zhi-yong ZHOU,Jian-bing ZHU,Jun-kang SHEN,Ya-kang DAI. Classification of renal tumor histology subtypes using radiomics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2381-2388.
[5] Qian WU,Ping WANG. Screening and bioinformatics analysis of lung cancer exhale breath biomarkers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2389-2395.
[6] Jing YANG,Chen GENG,Hai-lin WANG,Jian-song JI,Ya-kang DAI. Classification on histological subtypes of lung adenocarcinoma from low-resolution CT images based on DenseNet[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1164-1170.
[7] Yong HE,Qing GAO,An LIU,Miao SUN,Jian-zhong FU. 3D bioprinting: from structure to function[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 407-419.
[8] WANG Qin, FANG Jia ru, CAO Duan xi, ZHOU Jie, SU Kai qi, LI Hong bo, WANG Ping. Optimization design and drug analysis of cardiomyocytebased biosensor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1214-1220.
[9] WANG Qin, FANG Jia ru, CAO Duan xi, ZHOU Jie,SU Kai qi, LI Hong bo, WANG Ping. Optimization design and drug analysis of cardiomyocyte based biosensor[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2432-2438.
[10] CHEN Jing, XU Min fen, WANG Li qiang, YUAN Bo, DUAN Hui long, TANG Jia. Objective evaluation method for enhanced effects of FICE images[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 2013-2017.
[11] ZHENG Xiang, ZHANG Yin sheng, HUANG Zhen zhen, JIA Zheng, DUAN Hui long, ZHAO Yin hong, LI Hao min. Extensible framework of integration for CDS applications[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1658-1664.
[12] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 792-797.
[13] ZHOU Cong-cong, TU Chun-long, GAO Yun, WANG Fei-xiang, HE Cheng, GONG Hong-wei, LIAN Ping, YE Xue-song. Low power, wireless, wrist-worn device for HR monitoring based on double channels of pulse sensing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 798-806.
[14] LI Jiang, ZHAO Ya-qiong, BAO Ye-hua. Voice processing technique for patients with stroke based on chao theory and surrogate data analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 36-41.
[15] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1-2.