|
|
Ballistocardiogram and respiratory signal separation based on variational mode decomposition |
Ji-jun TONG1( ),Yan-jie BAI1,Jian-wei PAN2,Jia-feng YANG1,Lu-rong JIANG1,*( ) |
1. School of Information Sciences and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Department of Neurosurgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China |
|
|
Abstract A resistive film pressure sensor was embedded in the mattress, and the variational modal decomposition (VMD) algorithm was introduced into the two-dimensional physiological signal extraction process in order to monitor the ballistocardiogram (BCG) and respiratory signal in a non-invasive manner during sleep. The VMD algorithm was used to decompose the potential components of the BCG signal and respiratory signal in the physiological signal after the signal passes through the flexible pressure sensor in the mattress, hardware low-pass filtering, and digital detrending (DFA). The effective components were adaptively selected to reconstruct the BCG signal and the respiratory signal. The instantaneous frequencies of VMD, empirical mode decomposition (EMD), and complementary set empirical mode decomposition (CEEMD) components were compared based on Hilbert transform. The aliasing situation of VMD in 0~3.0 Hz was improved compared with EMD and CEEMD. The Bland-Altman method was used to evaluate the consistency of the standard results and experimental reconstruction results. Results show that 93.75% and 92.5% of the BCG and respiratory signals obtained by the VMD method are within the standard limit of 95% consistency, and there is a high consistency.
|
Received: 17 September 2019
Published: 28 October 2020
|
|
Corresponding Authors:
Lu-rong JIANG
E-mail: jijuntong@zstu.edu.cn;jianglurong@zstu.edu.cn
|
基于变分模态分解的心冲击信号和呼吸信号分离
为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程. 信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号. 基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善. 采用Bland-Altman法,对标准结果和实验重构结果进行一致性评价. 结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性.
关键词:
心冲击信号(BCG),
变分模态分解(VMD),
柔性压力传感器,
非入侵方式,
Bland-Altman
|
|
[1] |
BROWN J H R, HOFFMAN M J, DE LALLA J V Ballistocardiographic findings in patients with symptoms of angina pectoris[J]. Circulation, 1950, 1 (1): 132- 140
doi: 10.1161/01.CIR.1.1.132
|
|
|
[2] |
MOUKADEM A, FINNAOUI A, GASSARA H E, et al. Time-frequency domain for BCG analysis [C] // 2018 International Conference on Computer and Applications. Lebanon: ICCA, 2018: 226-230.
|
|
|
[3] |
马莹, 王云峰, 张海英, 等 基于压电薄膜传感器的心率呼吸率实时监测[J]. 传感器与微系统, 2018, 37 (6): 119- 121 MA Ying, WANG Yun-feng, ZHANG Hai-ying, et al Real-time monitoring of heart rate and respiratory rate based on piezoelectric thin-film sensor[J]. Transducer and Microsystem Technologies, 2018, 37 (6): 119- 121
|
|
|
[4] |
沈劲鹏, 王新安 适用于床垫式生理信号监测系统的信号处理方法[J]. 北京大学学报: 自然科学版, 2018, 54 (5): 921- 926 SHEN Jin-peng, WANG Xin-an Signal processing method for mattress-type physiological monitoring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (5): 921- 926
|
|
|
[5] |
HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
|
|
|
[6] |
WU Z, HUANG N E, CHEN X The multi-dimensional ensemble empirical mode decomposition method[J]. Advances in Adaptive Data Analysis, 2009, 1 (3): 339- 372
doi: 10.1142/S1793536909000187
|
|
|
[7] |
WU Z, HUANG N E Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1 (1): 1- 41
doi: 10.1142/S1793536909000047
|
|
|
[8] |
姜星, 耿读艳, 张园园, 等 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38 (2): 139- 148 JIANG Xing, GENG Du-yan, ZHANG Yuan-yuan, et al BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38 (2): 139- 148
|
|
|
[9] |
杨丹, 徐彬, 叶琳琳, 等 心脏心冲击信号降噪方法研究[J]. 生物医学工程学杂志, 2014, 31 (6): 1368- 1372 YANG Dan, XU Bin, YE Lin-lin, et al De-noising method research of ballistocardiogram signal[J]. Journal of Biomedical Engineering, 2014, 31 (6): 1368- 1372
|
|
|
[10] |
贾瑞生, 赵同彬, 孙红梅, 等 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58 (3): 1013- 1023 JIA Rui-sheng, ZHAO Tong-bin, SUN Hong-mei, et al Micro-seismic signal denoising method based on empirical mode decomposition amd independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58 (3): 1013- 1023
|
|
|
[11] |
徐信, 李志华, 杨越 基于EMD-ICA的激电数据降噪处理方法[J]. 计算机应用研究, 2017, 34 (6): 1737- 1739 XU Xin, LI Zhi-hua, YANG Yue De-noising of ip data based on EMD-ICA[J]. Application Research of Computers, 2017, 34 (6): 1737- 1739
|
|
|
[12] |
YEH J R, SHIEH J S, HUANG N E Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2 (2): 135- 156
doi: 10.1142/S1793536910000422
|
|
|
[13] |
SMITH J S The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2 (5): 443- 454
doi: 10.1098/rsif.2005.0058
|
|
|
[14] |
DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62 (3): 531- 544
|
|
|
[15] |
RAJ S, RAY K C. Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis [C] // 2017 7th International Symposium on Embedded Computing and System Design. Durgapur, India: IEEE, 2017: 1-5.
|
|
|
[16] |
ALVARADO S C, LUNA L P S, PALLàS A R An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform[J]. Biomedical Signal Processing and Control, 2016, 27: 96- 102
doi: 10.1016/j.bspc.2016.02.002
|
|
|
[17] |
HUANG N E. Hilbert-Huang transform and its applications [M]. Singapore: World Scientific, 2014.
|
|
|
[18] |
LI X, LI Z, WANG E, et al Analysis of natural mineral earthquake and blast based on Hilbert–Huang transform (HHT)[J]. Journal of Applied Geophysics, 2016, 128: 79- 86
doi: 10.1016/j.jappgeo.2016.03.024
|
|
|
[19] |
苗晟, 王威廉, 姚绍文 Hilbert-Huang 变换发展历程及其应用[J]. 电子测量与仪器学报, 2014, 28 (8): 812- 818 MIAO Sheng, WANG Wei-lian, YAO Shao-wen Historic development of HTT and its applications[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28 (8): 812- 818
|
|
|
[20] |
GIAVARINA D Understanding bland Altman analysis[J]. Biochemia Medica, 2015, 25 (2): 141- 151
doi: 10.11613/BM.2015.015
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|