|
|
Evaluation of generator side inertia based on electromechanical oscillation of power system |
Zhiqiang REN1,2( ),Mingxing TIAN1,2,*( ),Yu JIANG1,2,Dongfeng XING1,2 |
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract The connection of new energy power generation equipment to the power generation side leads to the emergence of “weak inertia” characteristics on the power generation side, which affects the safe and stable operation of the system. The synchronous phase measurement unit (PMU) was used to measure the electromechanical oscillation response, and based on the electromechanical oscillation parameter under small perturbation, an inertia assessment method for the power generation side was proposed. Based on the characteristics of the inertia response process, the unbalanced power allocation equation related to the inertia of each generator was derived. Based on the relationship between the small-signal state equation and the characteristic root of the multi-machine system, the formula for calculating the inertia of the generation side of a multi-machine system was derived. The inertia calculation of the generation side of a single-machine system was introduced, and the measurement methods of inertia ratio and the intrinsic oscillation frequency in the inertia calculation formula were described. The correctness of the proposed method was verified by simulation examples of a single-machine system, a dual-machine interconnection system, a WSCC 3-machine 9-node system, and a 10-machine 39-node system. Results show that the generation side inertia evaluation values obtained with the proposed method in several systems are close to the actual values and have good adaptability. The method can be used for power system generation side inertia evaluation.
|
Received: 25 January 2024
Published: 25 April 2025
|
|
Fund: 国家自然科学基金资助项目(52167013);甘肃省自然科学基金重点项目(24JRRA225);甘肃省自然科学基金资助项目(23JRRA891). |
Corresponding Authors:
Mingxing TIAN
E-mail: rzqlzjtu@163.com;tianmingxing@mail.lzjtu.cn
|
基于电力系统机电振荡的发电侧惯量评估
新能源发电设备接入发电侧会导致发电侧呈现“弱惯量”特征,影响系统的安全稳定运行. 利用同步相量测量单元(PMU)测量机电振荡响应,提出基于小扰动下机电振荡参数的发电侧惯量评估方法. 根据惯量响应过程的特点,推导与各发电机惯量有关的不平衡功率分配公式. 根据多机系统小信号状态方程与特征根的关系,推导多机系统发电侧惯量计算公式. 介绍单机系统发电侧惯量的计算方法,阐述惯量计算公式中的惯量比与固有振荡频率的测量方法. 通过单机系统、双机互联系统、WSCC3机9节点系统、10机39节点系统仿真算例验证所提方法的正确性. 结果表明,所提方法在多个系统中的发电侧惯量评估值与实际值接近,具有良好的适应性,可用于电力系统的发电侧惯量评估.
关键词:
电力系统,
发电侧惯量评估,
惯量响应,
机电振荡,
小信号状态方程
|
|
[1] |
黄林彬, 辛焕海, 黄伟, 等 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42 (8): 31- 38 HUANG Linbin, XIN Huanhai, HUANG Wei, et al Quantitative analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42 (8): 31- 38
doi: 10.7500/AEPS20170605010
|
|
|
[2] |
王博, 杨德友, 蔡国伟 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007 WANG Bo, YANG Deyou, CAI Guowei Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007
|
|
|
[3] |
TAN B, ZHAO J, NETTO M, et al Power system inertia estimation: review of methods and the impacts of converter-interfaced generations[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107362
doi: 10.1016/j.ijepes.2021.107362
|
|
|
[4] |
HEYLEN E, TENG F, STRBAC G Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111176
doi: 10.1016/j.rser.2021.111176
|
|
|
[5] |
CAI G, WANG B, YANG D, et al Inertia estimation based on observed electromechanical oscillation response for power systems[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4291- 4299
|
|
|
[6] |
李东东, 张佳乐, 徐波, 等 考虑频率分布特性的新能源电力系统等效惯量评估[J]. 电网技术, 2020, 44 (8): 2913- 2921 LI Dongdong, ZHANG Jiale, XU Bo, et al Equivalent inertia assessment in renewable power system considering frequency distribution properties[J]. Power System Technology, 2020, 44 (8): 2913- 2921
|
|
|
[7] |
ZENG F, ZHANG J, ZHOU Y, et al Online identification of inertia distribution in normal operating power system[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 3301- 3304
doi: 10.1109/TPWRS.2020.2986721
|
|
|
[8] |
江俊贤, 陈启超, 王菲, 等 计及不同控制方式的混合直流多馈入系统电网强度评估[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2305- 2313 JIANG Junxian, CHEN Qichao, WANG Fei, et al Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2305- 2313
|
|
|
[9] |
林弘毅, 郭潇, 伍梁, 等 电力电子装置强风散热模型简化方法及应用[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1159- 1167 LIN Hongyi, GUO Xiao, WU Liang, et al Simplification method and application of thermal model of forced air cooling system for power electronic device[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (6): 1159- 1167
|
|
|
[10] |
CAO X, STEPHEN B, ABDULHADI I F, et al Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3394- 3403
doi: 10.1109/TPWRS.2015.2501458
|
|
|
[11] |
GUO S, NORRIS S, BIALEK J Adaptive parameter estimation of power system dynamic model using modal information[J]. IEEE Transactions on Power Systems, 2014, 29 (6): 2854- 2861
doi: 10.1109/TPWRS.2014.2316916
|
|
|
[12] |
INOUE T, TANIGUCHI H, IKEGUCHI Y, et al Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 136- 143
doi: 10.1109/59.574933
|
|
|
[13] |
ZHANG J, XU H Online identification of power system equivalent inertia constant[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8098- 8107
doi: 10.1109/TIE.2017.2698414
|
|
|
[14] |
ASHTON P M, SAUNDERS C S, TAYLOR G A, et al Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 701- 709
doi: 10.1109/TPWRS.2014.2333776
|
|
|
[15] |
WALL P, GONZALEZ-LONGATT F, TERZIJA V. Estimation of generator inertia available during a disturbance [C]// Proceedings of the IEEE Power and Energy Society General Meeting . San Diego: IEEE, 2012: 1–8.
|
|
|
[16] |
WALL P, TERZIJA V Simultaneous estimation of the time of disturbance and inertia in power systems[J]. IEEE Transactions on Power Delivery, 2014, 29 (4): 2018- 2031
doi: 10.1109/TPWRD.2014.2306062
|
|
|
[17] |
DEL GIUDICE D, GRILLO S Analysis of the sensitivity of extended Kalman filter-based inertia estimation method to the assumed time of disturbance[J]. Energies, 2019, 12 (3): 483
doi: 10.3390/en12030483
|
|
|
[18] |
YOU S, LIU Y, KOU G, et al Non-invasive identification of inertia distribution change in high renewable systems using distribution level PMU[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1110- 1112
doi: 10.1109/TPWRS.2017.2713985
|
|
|
[19] |
陈志杰, 杨德友, 赵芳琦 随机数据驱动下的两区域系统惯量估计[J]. 东北电力大学学报, 2020, 40 (4): 48- 54 CHEN Zhijie, YANG Deyou, ZHAO Fangqi Two areas system inertia estimation based on ambient data[J]. Journal of Northeast Electric Power University, 2020, 40 (4): 48- 54
|
|
|
[20] |
TUTTELBERG K, KILTER J, WILSON D, et al Estimation of power system inertia from ambient wide area measurements[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 249- 257
|
|
|
[21] |
CHOW J H, CHAKRABORTTY A, VANFRETTI L, et al Estimation of radial power system transfer path dynamic parameters using synchronized phasor data[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 564- 571
doi: 10.1109/TPWRS.2008.919315
|
|
|
[22] |
曹斌, 原帅, 刘家豪, 等 考虑频率动态响应实时分区的电力系统惯量在线评估方法[J]. 电网技术, 2023, 47 (3): 930- 941 CAO Bin, YUAN Shuai, LIU Jiahao, et al Power system online inertia estimation considering real-time clustering of frequency dynamic response[J]. Power System Technology, 2023, 47 (3): 930- 941
|
|
|
[23] |
闵勇, 陈磊, 刘瑞阔, 等 电力系统频率动态中惯量与惯量响应特性辨析[J]. 中国电机工程学报, 2023, 43 (3): 855- 868 MIN Yong, CHEN Lei, LIU Ruikuo, et al Analysis on characteristics of inertia and inertial response in power system frequency dynamics[J]. Proceedings of the CSEE, 2023, 43 (3): 855- 868
|
|
|
[24] |
MILANO F, ORTEGA Á Frequency divider[J]. IEEE Transactions on Power Systems, 2017, 32 (2): 1493- 1501
doi: 10.1109/TPEL.2016.2543222
|
|
|
[25] |
方万良, 李建华, 王建学. 电力系统暂态分析 [M]. 4版. 北京: 中国电力出版社, 2017: 243–257.
|
|
|
[26] |
刘家豪, 王程, 毕天姝 面向新能源电力系统频率时空动态的节点等效惯量指标及其应用[J]. 中国电机工程学报, 2023, 43 (20): 7773- 7788 LIU Jiahao, WANG Cheng, BI Tianshu Node equivalent inertia index for temporal-spatial frequency dynamics of renewable energy power system and its applications[J]. Proceedings of the CSEE, 2023, 43 (20): 7773- 7788
|
|
|
[27] |
陈亮, 毕天姝, 薛安成, 等 基于断路器零阻抗特性的PMU量测状态估计方法[J]. 电力自动化设备, 2014, 34 (5): 105- 110 CHEN Liang, BI Tianshu, XUE Ancheng, et al State estimation based on PMU measurements considering zero-impedance characteristics of circuit breaker[J]. Electric Power Automation Equipment, 2014, 34 (5): 105- 110
doi: 10.3969/j.issn.1006-6047.2014.05.016
|
|
|
[28] |
刘方蕾, 毕天姝, 闫家铭, 等 基于PMU同步测量的分区惯量估计方法[J]. 华北电力大学学报: 自然科学版, 2020, 47 (3): 19- 26 LIU Fanglei, BI Tianshu, YAN Jiaming, et al Area inertia estimation based on PMU synchronous measurements[J]. Journal of North China Electric Power University: Natural Science Edition, 2020, 47 (3): 19- 26
|
|
|
[29] |
刘方蕾, 胥国毅, 刘家豪, 等 考虑电网结构和参数的电力系统惯量分布特性[J]. 电力系统自动化, 2021, 45 (23): 60- 67 LIU Fanglei, XU Guoyi, LIU Jiahao, et al Inertia distribution characteristics of power system considering structure and parameters of power grid[J]. Automation of Electric Power Systems, 2021, 45 (23): 60- 67
doi: 10.7500/AEPS20201017005
|
|
|
[30] |
LIU M, CHEN J, MILANO F On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 2693- 2701
doi: 10.1109/TPWRS.2020.3037265
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|