Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 870-878    DOI: 10.3785/j.issn.1008-973X.2025.04.023
    
Evaluation of generator side inertia based on electromechanical oscillation of power system
Zhiqiang REN1,2(),Mingxing TIAN1,2,*(),Yu JIANG1,2,Dongfeng XING1,2
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The connection of new energy power generation equipment to the power generation side leads to the emergence of “weak inertia” characteristics on the power generation side, which affects the safe and stable operation of the system. The synchronous phase measurement unit (PMU) was used to measure the electromechanical oscillation response, and based on the electromechanical oscillation parameter under small perturbation, an inertia assessment method for the power generation side was proposed. Based on the characteristics of the inertia response process, the unbalanced power allocation equation related to the inertia of each generator was derived. Based on the relationship between the small-signal state equation and the characteristic root of the multi-machine system, the formula for calculating the inertia of the generation side of a multi-machine system was derived. The inertia calculation of the generation side of a single-machine system was introduced, and the measurement methods of inertia ratio and the intrinsic oscillation frequency in the inertia calculation formula were described. The correctness of the proposed method was verified by simulation examples of a single-machine system, a dual-machine interconnection system, a WSCC 3-machine 9-node system, and a 10-machine 39-node system. Results show that the generation side inertia evaluation values obtained with the proposed method in several systems are close to the actual values and have good adaptability. The method can be used for power system generation side inertia evaluation.



Key wordspower system      generation side inertia evaluation      inertia response      electromechanical oscillation      small-signal state equation     
Received: 25 January 2024      Published: 25 April 2025
CLC:  TM 71  
Fund:  国家自然科学基金资助项目(52167013);甘肃省自然科学基金重点项目(24JRRA225);甘肃省自然科学基金资助项目(23JRRA891).
Corresponding Authors: Mingxing TIAN     E-mail: rzqlzjtu@163.com;tianmingxing@mail.lzjtu.cn
Cite this article:

Zhiqiang REN,Mingxing TIAN,Yu JIANG,Dongfeng XING. Evaluation of generator side inertia based on electromechanical oscillation of power system. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 870-878.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.023     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/870


基于电力系统机电振荡的发电侧惯量评估

新能源发电设备接入发电侧会导致发电侧呈现“弱惯量”特征,影响系统的安全稳定运行. 利用同步相量测量单元(PMU)测量机电振荡响应,提出基于小扰动下机电振荡参数的发电侧惯量评估方法. 根据惯量响应过程的特点,推导与各发电机惯量有关的不平衡功率分配公式. 根据多机系统小信号状态方程与特征根的关系,推导多机系统发电侧惯量计算公式. 介绍单机系统发电侧惯量的计算方法,阐述惯量计算公式中的惯量比与固有振荡频率的测量方法. 通过单机系统、双机互联系统、WSCC3机9节点系统、10机39节点系统仿真算例验证所提方法的正确性. 结果表明,所提方法在多个系统中的发电侧惯量评估值与实际值接近,具有良好的适应性,可用于电力系统的发电侧惯量评估.


关键词: 电力系统,  发电侧惯量评估,  惯量响应,  机电振荡,  小信号状态方程 
Fig.1 Multi-machine system schematic
Fig.2 Structural diagram of single-machine infinite bus system
参数数值参数数值
发电机内电势$ E $0.9线路电抗$ {{X}}_{{\mathrm{L}}} $0.15
无穷大端电压$ V $1.0发电机功角$ \delta $/(°)21.1
发电机暂态电抗$ {X}_{\mathrm{d}}^{\prime} $0.3发电机惯量$ H $/s5
变压器等效电抗$ {{X}}_{{\mathrm{T}}} $0.2
Tab.1 Parameters of single-machine infinity bus system
Fig.3 Power angle oscillation curve of single-machine infinite bus system
Fig.4 Structural diagram of dual-machine interconnection system
参数数值参数数值
电机内电势$ E_{1} $$ E_{2} $1.03线路电抗$ {{X}}_{{\mathrm{L}}} $0.8
电机暂态电抗$ {X}_{\mathrm{d}1}^{\prime} $$ {X}_{{{\mathrm{d}}2}}^{\prime} $0.2电机功角$ \delta_{1} $$ \delta_{2} $/(°)5.60、?18.77
变压器电抗$ {X}_{{\mathrm{T}}1} $${X}_{{\mathrm{T}}2} $0.1电机惯量$ H_{1} $$ H_{2} $/s4、2
Tab.2 Parameters of dual-machine interconnection system
Fig.5 Instantaneous active power change curve of each generator (dual-machine interconnection system)
Fig.6 Relative power angle curve between generators for dual-machine interconnection system
编号H/s误差/%
实际值测量值
发电机144.246.00
发电机222.031.50
Tab.3 Generator inertia evaluation results for dual-machine interconnection system
Fig.7 Structural diagram of WSCC 3-machine 9-node system
编号S/(MV·A)H/s
发电机1247.523.64
发电机2192.06.40
发电机3128.03.01
Tab.4 Generator parameter of WSCC 3-machine 9-node system
Fig.8 Instantaneous active power change curve of each generator (WSCC 3-machine 9-node system)
Fig.9 Relative power angle curve between generators for WSCC 3-machine 9-node system
编号H/s误差/%
实际值测量值
发电机123.6422.226.00
发电机26.406.183.44
发电机33.012.893.98
Tab.5 Generator inertia evaluation result for WSCC 3-machine 9-node system
Fig.10 Instantaneous active power change curve of each generator after new energy connection (WSCC 3-machine 9-node system)
Fig.11 Relative power angle curve between generators for WSCC 3-machine 9-node system (after new energy connection)
编号H/s误差/%
实际值测量值
发电机123.6422.206.09
等值发电机23.203.083.73
发电机33.012.961.66
Tab.6 Evaluation result of generation side inertia for WSCC 3-machine 9-node system after new energy connection
Fig.12 Structural diagram of 10-machine 39-node system
编号H/s编号H/s
发电机150.00发电机63.48
发电机23.03发电机72.64
发电机33.58发电机82.43
发电机42.86发电机93.45
发电机52.60发电机104.20
Tab.7 Inertia of generator or equivalent generator (10-machine 39-node system)
编号$ \Delta P_{\mathrm{e}i}^{\prime} $/MW编号$\Delta P_{\mathrm{e}i}^{\prime} $/MW
发电机1189.00发电机613.58
发电机211.50发电机710.20
发电机313.06发电机89.52
发电机411.00发电机913.56
发电机510.55发电机1016.02
Tab.8 Active power change of each generator or equivalent generator (10-machine 39-node system)
编号${\omega _{\mathrm{z}}}$(rad/s)
发电机2-发电机13.918
发电机3-发电机14.124
发电机4-发电机14.126
发电机5-发电机14.124
发电机6-发电机14.124
发电机7-发电机14.122
发电机8-发电机14.608
发电机9-发电机14.123
发电机10-发电机14.124
Tab.9 Oscillation angular frequency of relative power angle curve (10-machine 39-node system)
编号H/s误差/%
实际值测量值
发电机150.0046.836.34
发电机23.032.855.94
发电机33.583.249.50
发电机42.862.734.55
发电机52.602.610.38
发电机63.483.363.45
发电机72.642.534.17
发电机82.432.362.88
发电机93.453.362.61
发电机104.203.975.48
Tab.10 Evaluation result of generation side inertia for 10-machine 39-node system
[1]   黄林彬, 辛焕海, 黄伟, 等 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42 (8): 31- 38
HUANG Linbin, XIN Huanhai, HUANG Wei, et al Quantitative analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42 (8): 31- 38
doi: 10.7500/AEPS20170605010
[2]   王博, 杨德友, 蔡国伟 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007
WANG Bo, YANG Deyou, CAI Guowei Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007
[3]   TAN B, ZHAO J, NETTO M, et al Power system inertia estimation: review of methods and the impacts of converter-interfaced generations[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107362
doi: 10.1016/j.ijepes.2021.107362
[4]   HEYLEN E, TENG F, STRBAC G Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111176
doi: 10.1016/j.rser.2021.111176
[5]   CAI G, WANG B, YANG D, et al Inertia estimation based on observed electromechanical oscillation response for power systems[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4291- 4299
[6]   李东东, 张佳乐, 徐波, 等 考虑频率分布特性的新能源电力系统等效惯量评估[J]. 电网技术, 2020, 44 (8): 2913- 2921
LI Dongdong, ZHANG Jiale, XU Bo, et al Equivalent inertia assessment in renewable power system considering frequency distribution properties[J]. Power System Technology, 2020, 44 (8): 2913- 2921
[7]   ZENG F, ZHANG J, ZHOU Y, et al Online identification of inertia distribution in normal operating power system[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 3301- 3304
doi: 10.1109/TPWRS.2020.2986721
[8]   江俊贤, 陈启超, 王菲, 等 计及不同控制方式的混合直流多馈入系统电网强度评估[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2305- 2313
JIANG Junxian, CHEN Qichao, WANG Fei, et al Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2305- 2313
[9]   林弘毅, 郭潇, 伍梁, 等 电力电子装置强风散热模型简化方法及应用[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1159- 1167
LIN Hongyi, GUO Xiao, WU Liang, et al Simplification method and application of thermal model of forced air cooling system for power electronic device[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (6): 1159- 1167
[10]   CAO X, STEPHEN B, ABDULHADI I F, et al Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3394- 3403
doi: 10.1109/TPWRS.2015.2501458
[11]   GUO S, NORRIS S, BIALEK J Adaptive parameter estimation of power system dynamic model using modal information[J]. IEEE Transactions on Power Systems, 2014, 29 (6): 2854- 2861
doi: 10.1109/TPWRS.2014.2316916
[12]   INOUE T, TANIGUCHI H, IKEGUCHI Y, et al Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 136- 143
doi: 10.1109/59.574933
[13]   ZHANG J, XU H Online identification of power system equivalent inertia constant[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8098- 8107
doi: 10.1109/TIE.2017.2698414
[14]   ASHTON P M, SAUNDERS C S, TAYLOR G A, et al Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 701- 709
doi: 10.1109/TPWRS.2014.2333776
[15]   WALL P, GONZALEZ-LONGATT F, TERZIJA V. Estimation of generator inertia available during a disturbance [C]// Proceedings of the IEEE Power and Energy Society General Meeting . San Diego: IEEE, 2012: 1–8.
[16]   WALL P, TERZIJA V Simultaneous estimation of the time of disturbance and inertia in power systems[J]. IEEE Transactions on Power Delivery, 2014, 29 (4): 2018- 2031
doi: 10.1109/TPWRD.2014.2306062
[17]   DEL GIUDICE D, GRILLO S Analysis of the sensitivity of extended Kalman filter-based inertia estimation method to the assumed time of disturbance[J]. Energies, 2019, 12 (3): 483
doi: 10.3390/en12030483
[18]   YOU S, LIU Y, KOU G, et al Non-invasive identification of inertia distribution change in high renewable systems using distribution level PMU[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1110- 1112
doi: 10.1109/TPWRS.2017.2713985
[19]   陈志杰, 杨德友, 赵芳琦 随机数据驱动下的两区域系统惯量估计[J]. 东北电力大学学报, 2020, 40 (4): 48- 54
CHEN Zhijie, YANG Deyou, ZHAO Fangqi Two areas system inertia estimation based on ambient data[J]. Journal of Northeast Electric Power University, 2020, 40 (4): 48- 54
[20]   TUTTELBERG K, KILTER J, WILSON D, et al Estimation of power system inertia from ambient wide area measurements[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 249- 257
[21]   CHOW J H, CHAKRABORTTY A, VANFRETTI L, et al Estimation of radial power system transfer path dynamic parameters using synchronized phasor data[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 564- 571
doi: 10.1109/TPWRS.2008.919315
[22]   曹斌, 原帅, 刘家豪, 等 考虑频率动态响应实时分区的电力系统惯量在线评估方法[J]. 电网技术, 2023, 47 (3): 930- 941
CAO Bin, YUAN Shuai, LIU Jiahao, et al Power system online inertia estimation considering real-time clustering of frequency dynamic response[J]. Power System Technology, 2023, 47 (3): 930- 941
[23]   闵勇, 陈磊, 刘瑞阔, 等 电力系统频率动态中惯量与惯量响应特性辨析[J]. 中国电机工程学报, 2023, 43 (3): 855- 868
MIN Yong, CHEN Lei, LIU Ruikuo, et al Analysis on characteristics of inertia and inertial response in power system frequency dynamics[J]. Proceedings of the CSEE, 2023, 43 (3): 855- 868
[24]   MILANO F, ORTEGA Á Frequency divider[J]. IEEE Transactions on Power Systems, 2017, 32 (2): 1493- 1501
doi: 10.1109/TPEL.2016.2543222
[25]   方万良, 李建华, 王建学. 电力系统暂态分析 [M]. 4版. 北京: 中国电力出版社, 2017: 243–257.
[26]   刘家豪, 王程, 毕天姝 面向新能源电力系统频率时空动态的节点等效惯量指标及其应用[J]. 中国电机工程学报, 2023, 43 (20): 7773- 7788
LIU Jiahao, WANG Cheng, BI Tianshu Node equivalent inertia index for temporal-spatial frequency dynamics of renewable energy power system and its applications[J]. Proceedings of the CSEE, 2023, 43 (20): 7773- 7788
[27]   陈亮, 毕天姝, 薛安成, 等 基于断路器零阻抗特性的PMU量测状态估计方法[J]. 电力自动化设备, 2014, 34 (5): 105- 110
CHEN Liang, BI Tianshu, XUE Ancheng, et al State estimation based on PMU measurements considering zero-impedance characteristics of circuit breaker[J]. Electric Power Automation Equipment, 2014, 34 (5): 105- 110
doi: 10.3969/j.issn.1006-6047.2014.05.016
[28]   刘方蕾, 毕天姝, 闫家铭, 等 基于PMU同步测量的分区惯量估计方法[J]. 华北电力大学学报: 自然科学版, 2020, 47 (3): 19- 26
LIU Fanglei, BI Tianshu, YAN Jiaming, et al Area inertia estimation based on PMU synchronous measurements[J]. Journal of North China Electric Power University: Natural Science Edition, 2020, 47 (3): 19- 26
[29]   刘方蕾, 胥国毅, 刘家豪, 等 考虑电网结构和参数的电力系统惯量分布特性[J]. 电力系统自动化, 2021, 45 (23): 60- 67
LIU Fanglei, XU Guoyi, LIU Jiahao, et al Inertia distribution characteristics of power system considering structure and parameters of power grid[J]. Automation of Electric Power Systems, 2021, 45 (23): 60- 67
doi: 10.7500/AEPS20201017005
[30]   LIU M, CHEN J, MILANO F On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 2693- 2701
doi: 10.1109/TPWRS.2020.3037265
[1] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[2] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[3] Cheng ZHANG,Tao JIN,Pei-qiang LI,Hui-qiong DENG. Wide-area coordination control strategy for power system using multi-objective bat algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 589-597.
[4] WANG Guan-nan, SUN Li-ying,GAN De-qiang,WANG Bin-bin,XIN Huan-hai. Generalized phase compensation method for power system stabilizer design[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1295-1303.
[5] LV Wen-tao,SHEN Chen,JIANG Dao-zhuo,GUI Fan,FAN Yu,WU Zhao-lin. UPFC with fault current limiting and capacitor voltage limiting[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 877-881.
[6] ZHAO Wei,HUANG Yu-zhao,YU Zhe-qing,RUAN Jian. Hydraulic power system of high speed ejection experiment device[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 799-804.
[7] ZHANG Xing-you, WANG Shou-xiang. Risk assessment of distribution power systems considering communication systems[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 568-574.
[8] CHEN Jian-hong, QIAO Qing, ZHANG Bao, WU Wen-jian, LI Wei, SHENG De-ren.
Critical pressure ratio characteristics of steam turbine governing stage
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2072-2079.
[9] WU Da-zhuan, CHEN Yi-wei, MIAO Tian-cheng, DU Tao, XU Wei-wei,WANG Le-qin. Experimental study on noise characteristics of high temperature gas exhausted by thermal power system[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2165-2169.
[10] DING Li-cong, JIN Xiao-jun, WANG Chun-hui, JIN Zhong-he. Design and on-orbit verification of ZDPS-1A power system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 2073-2080.
[11] YAN Bo, JIANG Dao-zhuo, GAN De-qiang, ZANG Yu-qing. An UPFC nonlinear robust controller based on feedback
linearization H∞ method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1975-1980.
[12] WANG Kang, FU Yang, XIN Huan-hai, WANG Guan-nan. Excitation controller design for power system based on
new Back-stepping method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 747-753.
[13] LIAO Zu-wei, XUAN Ji, RONG Gang, ZHANG Jian-dong. Fuzzy programming based scheduling of steam power system in
petrochemical complex
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 621-626.
[14] CHEN Li-li, HUANG Min-xiang, GAN De-qiang. Optimal allocation of short circuit current limiting strategies base on
modified discrete particle swarm optimization algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 510-514.
[15] DING Xiao-Ying, WANG Jian-Hua, WANG Ti-Fan, LIU Lin. Analysis and improvement of interior point cutting plane method for
optimal power flow in power systems
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 771-777.