Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2073-2080    DOI: 10.3785/j.issn.1008-973X.2012.11.020
Design and on-orbit verification of ZDPS-1A power system
DING Li-cong, JIN Xiao-jun, WANG Chun-hui, JIN Zhong-he
Department of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


A new scheme of the power system was proposed in order to meet the  microminiaturization need of ZDPS-1A. To improve the power level of the satellite and to obtain a high efficiency power system, high efficient and high-tech devices such as GaInP2/GaAs/Ge solar cells, Li-ion batteries were adopted, and industrial power management ICs were widely used in the design of the power conversion and distribution circuit. Besides, the electric system was optimized and the operation mode of the satellite was reasonably planned to improve the reliability of the power system. Furthermore, a simulation model of the power system based on Matlab/Simulink was established to study the energy balance performance of the satellite. Analysis of the simulation, ground test and onorbit data for nearly one year of the power system, show that the solar cells can output 3.7 W in the case of simulation and 4.5 W under actual operating conditions, that the performance of the battery has deteriorated along time, and that the power dissipation of some loads has increased along time while the energy balance of the satellite is sustained.

Published: 11 December 2012
CLC:  V 474  
Cite this article:

DING Li-cong, JIN Xiao-jun, WANG Chun-hui, JIN Zhong-he. Design and on-orbit verification of ZDPS-1A power system. J4, 2012, 46(11): 2073-2080.

URL:     OR


为满足“皮星一号A”(ZDPS-1A)卫星微小型化的要求,提出一种新型电源系统的设计方案.通过采用三结砷化镓(Tri-Junction GaInP2/GaAs/Ge)太阳能电池、锂离子蓄电池等高效、轻型器件和在功率转换、分配电路中大量应用工业级集成电路芯片,以提高卫星功率和电源系统效率.通过简化供配电电路结构,合理规划工作模式,以提高电源系统的可靠性.建立基于Matlab/Simulink的能量平衡仿真系统,以研究卫星的能量平衡.分析卫星电源系统近一年的在轨数据、地面测试数据和仿真数据,结果表明:仿真得到太阳能电池输出平均功率为3.7 W,在轨输出平均功率高于4.5 W,电力充足、储能性能稳定;锂离子电池组功能正常,但工作电压长期高于母线电压设计最大值(4.2 V),内阻逐渐增加,储能性能随时间下降;各系统负载长期工作后功率有所上升,但整星仍然能够保持能量平衡.

\[1\]  金小军,赵翔宇,辜渝嘉,等. 皮卫星在轨能量平衡仿真研究\[J\]. 浙江大学学报:工学版,2009,43(7):1282-1287.
JIN Xiaojun, ZHAO Xiangyu, GU Yujia, et al. Study on simulation of onorbit energy balance of picosatellite \[J\]. Journal of Zhejiang University: Engineering Science, 2009, 43(7): 1282-1287.
\[2\]  马世俊. 卫星电源技术\[M\]. 北京:中国宇航出版社, 2001,86-105.
\[3\]  徐伟. 低轨道长寿命卫星电源特点分析\[J\]. 电源技术, 2009, 33(12): 1095-1096.
XU Wei. Characteristic analysis of power supply for LEO long life satellite\[J\]. Chinese Journal of Power Sources, 2009, 33(12):1095-1096.
\[4\] PATEL M R. Spacecraft power systems\[M\]. Florida: CRC press, 2005:4-5.
\[5\]  李国欣. 航天器电源系统技术概论(上)\[M\]. 北京:中国宇航出版社, 2008:63-104.
\[6\]  THOMAS J, THOMSEN M. Design of a power supply system for DTUsat \[D\]. Danish: Danish Technical University, 2002.
\[7\]  KELLY C O, FRIEND H D, KEEN C A. Lithiumion satellite cell development: past, present and future\[J\]. IEEE Aerospace & Electronic Systems Magazine, 1998, 13(6): 21-25.
\[8\]  ISAACSON M J, DAMAN M E, HOLLANDSWORTH R P. Liion batteries for space applications\[C\]∥ Energy Conversion Engineering Confoerence. Honolulu: \[s.n.\], 1997: 35-48.
\[9\] 赵翔宇,金小军,韩柯,等. 皮卫星电源系统的设计与仿真\[J\]. 浙江大学学报:工学版, 2009, 43(2): 228-233.
ZHAO Xiangyu, JIN Xiaojun, HAN Ke, et al. Design and simulation of the power system of picosatellite \[J\]. Journal of Zhejiang University: Engineering Science, 2009, 43(2): 228-233.
\[10\] CHO Y J, CHO B H. Multiple battery module for the lowearthorbit spacecraft power system \[C\] ∥ ICPE. Yokohama: Kluwer Academic Publishers, 2001: 84-88.
\[11\]  WU Zhifei, YOU Zheng, SALVIGNOLl J. Tsinghua1 microsatellite power system architecture and design\[J\]. Tsinghua science and technology, 2001, 6(4): 289-293.
\[12\] 辜渝嘉,金小军,赵翔宇,等. 皮卫星在轨能量平衡仿真及实验\[J\]. 传感器技术学报, 2010, 23(6): 829-833.
GU Yujia, JIN Xiaojun, ZHAO Xiangyu, et al. Onorbit energy balance simulation and experiment of picoSatellite \[J\]. Chinese Journal of Sensors and Actuators, 2010, 23(6): 829-833.
\[13\] VERA E, KINSNER W. Autonomous power management system for a small satellite \[C\]∥ Proceedings of WESCANEX’95, ‘Communications, Power and Computing’. \[S.l.\]: Institute of Electrical and Electronics Engineers, 1995: 312-317.
\[14\] 吴赟,蒋新华,谢晶莹. 锂离子电池循环寿命快速衰减的原因\[J\]. 电池, 2009, 39(4): 206-207.
WU Yun, JIANG Xinhua, XIE Jingying, The reasons of rapid decline in cycle life of Liion battery \[J\]. Battery Bimonthly, 2009, 39(4): 206-207.
\[15\]  GUY S, PHILIPPE B, MICHEL B. Aging of lithiumion batteries \[J\]. Journal of Power Sources, 2004, 127(1/2): 65-71.
\[16\]   JUSEF H, PRISCILLA R, STEFANIA P, et al. Determination of the safety level of an advanced lithium ion battery having a nanostructured SnC anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoridebased gel electrolyte\[J\]. Electrochimica Acta, 2010, 55(13): 4194-4200.
\[17\]   KAORU A, MAKOTO S, TAKAHISA S. Study of life evaluation methods for Liion batteries for backup applications \[J\]. Journal of Power Sources, 2003, 119-121: 902-905.
\[18\] 辜渝嘉. 皮卫星电源系统的研制\[D\]. 杭州: 浙江大学,  2010: 31-37.
GU Yujia. Development of the power system of the picosatellite \[D\]. Hangzhou: Zhejiang University, 2010: 31-37.

No related articles found!