|
|
EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network |
Yue LIU( ),Xueying ZHANG*( ),Guijun CHEN,Lixia HUANG,Ying SUN |
College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The multi-brain attention mechanism and capsule fusion module based on CapsNet (MBA-CF-cCapsNet) was proposed in order to improve the accuracy of emotion recognition. EEG-fNIRS signals were evoked by emotional video clips to construct TYUT3.0 dataset, and the features of EEG and fNIRS were extracted and mapped to the matrix. The features of EEG and fNIRS were fused by the multi-brain region attention mechanism, and different weights were given to the features of different brain regions in order to extract higher quality primary capsules. The capsule fusion module was used to reduce the number of capsules entering the dynamic routing mechanism and reduce the running time of the model. The MBA-CF-cCapsNet model was used to conduct experiment on the TYUT3.0 dataset. The accuracy of emotion recognition combined with the two signals increased by 1.53% and 14.35% compared with the results of single-modal EEG and fNIRS. The average recognition rate of the MBA-CF-cCapsNet model increased by 4.98% compared with the original CapsNet model, and was improved by 1%-5% compared with the current commonly used CapsNet emotion recognition model.
|
Received: 10 July 2023
Published: 23 October 2024
|
|
Fund: 国家自然科学基金资助项目(62271342,62201377);山西省回国留学人员科研资助项目(2022-072);山西省基础研究计划资助项目 (202203021211174). |
Corresponding Authors:
Xueying ZHANG
E-mail: liuyueofficial9935@163.com;zhangxy@tyut.edu.cn
|
基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别
为了提高情感识别的准确率,提出多脑区注意力机制和胶囊融合模块的胶囊网络模型(MBA-CF-cCapsNet). 通过情感视频片段诱发采集EEG-fNIRS信号,构建TYUT3.0数据集. 提取EEG和fNIRS的特征,将其映射到矩阵,通过多脑区注意力机制融合EEG和fNIRS的特征,给予不同脑区特征不同的权重,以提取质量更高的初级胶囊. 使用胶囊融合模块,减少进入动态路由机制的胶囊数量,减少模型运行的时间. 利用MBA-CF-cCapsNet模型在TYUT3.0情感数据集上进行实验,与单模态EEG和fNIRS识别结果相比,2种信号结合情感识别的准确率提高了1.53%和14.35%. MBA-CF-cCapsNet模型与原始CapsNet模型相比,平均识别率提高了4.98%,与当前常用的CapsNet情感识别模型相比提高了1%~5%.
关键词:
胶囊网络,
EEG,
fNIRS,
多脑区注意力机制,
胶囊融合,
情感识别
|
|
[1] |
吴朝晖 类脑研究: 为人类构建超级大脑[J]. 浙江大学学报: 工学版, 2020, 54 (3): 425- 426 WU Zhaohui Cybrain: building superbrain for humans[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 425- 426
|
|
|
[2] |
QIU L, ZHONG Y, XIE Q, et al Multi-modal integration of EEG-fNIRS for characterization of brain activity evoked by preferred music[J]. Frontiers in Neurorobotics, 2022, 16: 823435
doi: 10.3389/fnbot.2022.823435
|
|
|
[3] |
MAJID R M, JONG H L EEG based emotion recognition from human brain using Hjorth parameters and SVM[J]. International Journal of Bio-Science and Bio-Technology, 2015, 7 (3): 23- 32
doi: 10.14257/ijbsbt.2015.7.3.03
|
|
|
[4] |
LI T Y, FU B L, WU Z X, et al EEG-based emotion recognition using spatial-temporal-connective features via multi-scale CNN[J]. IEEE Access, 2023, 11: 41859- 41867
doi: 10.1109/ACCESS.2023.3270317
|
|
|
[5] |
DU G L, SU J S, ZHANG L L, et al A multi-dimensional graph convolution network for EEG emotion recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1- 11
|
|
|
[6] |
LI C, HUANG X Y, SONG R C, et al EEG-based seizure prediction via Transformer guided CNN[J]. Measurement, 2022, 203: 111948
doi: 10.1016/j.measurement.2022.111948
|
|
|
[7] |
CHENG J, CHEN M Y, LI C, et al Emotion recognition from multi-channel EEG via deep forest[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25 (2): 453- 464
|
|
|
[8] |
BANDARA D, VELIPASALAR S, BRATT S, et al Building predictive models of emotion with functional near-infrared spectroscopy[J]. International Journal of Human-Computer Studies, 2018, 110: 75- 85
doi: 10.1016/j.ijhcs.2017.10.001
|
|
|
[9] |
HU X, ZHUANG C, WANG F, et al fNIRS evidence for recognizably different positive emotions[J]. Frontiers in Human Neuroscience, 2019, 13: 120
doi: 10.3389/fnhum.2019.00120
|
|
|
[10] |
SUN Y, AYAZ H, AKANSU AN Multimodal affective state assessment using fNIRS+EEG and spontaneous facial expression[J]. Brain Sciences, 2020, 10 (2): 85- 104
doi: 10.3390/brainsci10020085
|
|
|
[11] |
BECKER H, FLEUREAU J, GUILLOTEL P, et al Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources[J]. IEEE Transactions on Affective Computing, 2020, 11 (2): 244- 257
doi: 10.1109/TAFFC.2017.2768030
|
|
|
[12] |
ZHE S, ZIHAO H, FENG D, et al A novel multimodal approach for hybrid brain–computer interface[J]. IEEE Access, 2020, 8: 89909- 89918
doi: 10.1109/ACCESS.2020.2994226
|
|
|
[13] |
DELIGANI R J, BORGHEAI S B, MCLINDEN J, et al Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework[J]. Biomedical Optics Express, 2021, 12 (3): 1635- 1650
|
|
|
[14] |
KWAK Y C, SONG W J, KIM S E FGANet: fNIRS-guided attention network for hybrid EEG-fNIRS brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 329- 339
doi: 10.1109/TNSRE.2022.3149899
|
|
|
[15] |
王颖, 高胜 轻量型胶囊网络语音情感识别方法[J]. 电子科技大学学报, 2023, 52 (3): 423- 429 WANG Ying, GAO Sheng A speech emotion recognition method based on lightweight capsule network[J]. Journal of University of Electronic Science and Technology of China, 2023, 52 (3): 423- 429
doi: 10.12178/1001-0548.2022086
|
|
|
[16] |
杨巨成, 韩书杰, 毛磊, 等 胶囊网络模型综述[J]. 山东大学学报: 工学版, 2019, 49 (6): 1- 10 YANG Jucheng, HAN Shujie, MAO Lei, et al Review of capsule network[J]. Journal of Shandong University: Engineering Science, 2019, 49 (6): 1- 10
|
|
|
[17] |
HINTON G E, OSINDERO S, TEH Y W A fast-learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527- 1554
|
|
|
[18] |
ZHANG Y, CHENG C, ZHANG Y Multimodal emotion recognition using a hierarchical fusion convolutional neural network[J]. IEEE Access, 2021, 9: 7943- 7951
doi: 10.1109/ACCESS.2021.3049516
|
|
|
[19] |
谌鈫, 陈兰岚, 江润强 集成胶囊网络的脑电情绪识别[J]. 计算机工程与应用, 2022, 58 (8): 175- 184 CHEN Qin, CHEN Lanlan, JIANG Runqiang Emotion recognition of EEG based on ensemble CapsNet[J]. Computer Engineering and Applications, 2022, 58 (8): 175- 184
doi: 10.3778/j.issn.1002-8331.2010-0263
|
|
|
[20] |
YU L, DING Y F, CHANG L, et al Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network[J]. Computers in Biology and Medicine, 2020, 123: 103927
doi: 10.1016/j.compbiomed.2020.103927
|
|
|
[21] |
WANG Z H, CHEN C, LI J, et al ST-CapsNet: linking spatial and temporal attention with capsule network for P300 detection improvement[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 991- 1000
doi: 10.1109/TNSRE.2023.3237319
|
|
|
[22] |
LI C, WANG B, ZHANG S L, et al Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism[J]. Computers in Biology and Medicine, 2022, 143: 105303
doi: 10.1016/j.compbiomed.2022.105303
|
|
|
[23] |
张静, 张雪英, 陈桂军, 等 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49 (3): 191- 198 ZHANG Jing, ZHANG Xueying, CHEN Guijun, et al EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism[J]. Journal of Xidian University, 2022, 49 (3): 191- 198
|
|
|
[24] |
GUIDO N, EDGAR L G, ZHENG L, et al Mathematical relations between measures of brain connectivity estimated from electrophysiological recordings for gaussian distributed data[J]. Frontiers in Neuroscience, 2020, 14: 577574
doi: 10.3389/fnins.2020.577574
|
|
|
[25] |
HAO M G, XING T X, JIANG J L, et al Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8 (3): 331- 368
doi: 10.1007/s41095-022-0271-y
|
|
|
[26] |
崔浩阳, 丁偕, 张敬谊 基于细胞图卷积的组织病理图像分类研究[J]. 计算机工程与应用, 2020, 56 (24): 223- 228 CUI Haoyang, DING Xie, ZHANG Jingyi Research on classification of histopathological image based on cell graph convolutional network[J]. Computer Engineering and Applications, 2020, 56 (24): 223- 228
doi: 10.3778/j.issn.1002-8331.2009-0364
|
|
|
[27] |
GUANG B, KAI Y, LI T, et al Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition[J]. Frontiers in Neurorobotics, 2022, 16: 834952
doi: 10.3389/fnbot.2022.834952
|
|
|
[28] |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs [J]. Advances in Neural Information Processing Systems, 2017(12): 1024-1034.
|
|
|
[29] |
LI Y, ZHENG W, WANG L, et al From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2019, 13 (2): 568- 578
|
|
|
[30] |
MOON S E, JANG S B, LEE J S. Convolutional neural network approach for EEG-based emotion recognition using brain connectivity and its spatial information [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 2556–2560.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|