1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China 2. Xuanwu Hospital, Capital Medical University, Beijing 100053, China
A novel algorithm for seizure prediction based on patient specific manner was proposed to improve the accuracy of epileptic prediction, including feature extraction, pre-ictal period selection, feature selection and channel selection. Time-frequency features and spatial features were extracted from each channel by 2 s windows with 1 s overlap. A continuous 10 min data was selected as a valid positive sample of the pre-ictal period from segment before seizure onset, which achieved the maximum linear separability compared with the inter-ictal period. The effective features were selected by elastic net, then the selected effective features were used to select effective channels in greedy manner. The effective features of effective channels were input into classifier. The algorithm was tested on the scalp electroencephalogram (sEEG) from the MIT Physio database and the database collected in Xuanwu Hospital. The algorithm achieved a recall of 95.76% and a false positive rate of 0.1073 h?1 in MIT database, and a recall of 97.80% and a false positive rate of 0.0453 h?1 in Xuanwu Hospital database. Results show that the algorithm has high sensitivity and low false positive rate.
Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.
Fig.2Matrixes of brain function connectivity network
编号
Ne
nh
R /%
FPR /h?1
1
6
5.6
94.44
0.0430
5
4
4.0
100.00
0.1311
6
10
9.5
95.00
0.1741
7
3
3.0
100.00
0.1717
8
5
4.4
88.00
0.0419
9
4
3.5
87.50
0.1177
10
7
6.5
93.88
0.0884
11
3
3.0
100.00
0.1387
14
6
6.0
100.00
0.1195
16
5
4.4
88.00
0.1814
18
4
3.7
93.75
0.0916
19
2
2.0
100.00
0.0056
20
6
6.0
100.00
0.0487
22
3
3.0
100.00
0.1483
平均
?
?
95.76
0.1073
Tab.1Prediction results based on MIT dataset
编号
T
Ne
nh
R /%
FPR /h?1
1
20
6
5.5
91.67
0.0412
2
22
6
4.8
80.56
0.0302
3
8
2
2.0
100.00
0.0412
4
16
3
3.0
100.00
0.1161
5
8
2
2.0
100.00
0.0527
6
11
4
4.0
100.00
0.0475
7
18
10
9.7
97.00
0.0280
8
8
2
2.0
100.00
0.0379
9
22
9
9.0
100.00
0.0726
10
19
6
6.0
100.00
0.0632
11
19
5
5.0
100.00
0.0485
12
17
4
4.0
100.00
0.0410
13
7
4
4.0
100.00
0.0465
14
13
4
4.0
100.00
0.0334
15
8
4
4.0
100.00
0.0489
16
16
7
7.0
100.00
0.0105
17
11
5
5.0
100.00
0.0324
18
27
9
8.0
88.89
0.0395
19
8
2
2.0
100.00
0.0289
平均
?
?
?
97.80
0.0453
Tab.2Prediction results based on dataset collected from Xuanwu Hospital
Fig.3Comparison of features between pre-ictal period and 10 minutes before onset
Fig.4Performance comparison of PPS and no-PPS on Recall
Fig.5Performance comparison of PPS and no-PPS on FPR
Fig.6Performance comparison of FCN and no-FCN on Recall
Fig.7Performance comparison of FCN and no-FCN on FPR
时间
方法
数据来源
发作次数
R /%
FPR /h?1
2016
文献[32]
MIT10位患者
31
77.00
0.1700
2013
文献[33]
MIT10位患者
51
88.20
?
2017
文献[34]
MIT13位患者
45
86.67
0.3670
2017
文献[35]
MIT24位患者
170
89.00
0.3900
2017
文献[36]
MIT13位患者
64
81.20
0.1600
本研究
MIT17位患者
75
95.76
0.1073
Tab.3Comparison of different algorithms based on MIT database
[1]
BOER H M D, MULA M, SANDER J W The global burden and stigma of epilepsy[J]. Epilepsy and Behavior, 2008, 12 (4): 540- 546
doi: 10.1016/j.yebeh.2007.12.019
[2]
LEONARDI M, USTUN T B The global burden of epilepsy[J]. Epilepsia, 2010, 43 (6): 21- 25
[3]
AARABI A, FAZEL-REZAI R, AGHAKHANI Y. EEG seizure prediction: measures and challenges [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 1864-1867.
[4]
SAAB M E, GOTMAN J A system to detect the onset of epileptic seizures in scalp EEG[J]. Clinical Neurophysiology, 2005, 116 (2): 427- 442
doi: 10.1016/j.clinph.2004.08.004
[5]
TEIXEIRA C A, DIREITO B, BANDARABADI M, et al Epileptic seizure predictors based on computational intelligence techniques: acomparative study with 278 patients[J]. Computer Methods and Programs in Biomedicine, 2014, 114 (3): 324- 336
doi: 10.1016/j.cmpb.2014.02.007
[6]
BANDARABADI M, TEIXEIRA C A, RASEKHI J, et al Epileptic seizure prediction using relative spectral power features[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126 (2): 237- 248
doi: 10.1016/j.clinph.2014.05.022
[7]
YUN P, LAN L, PARHI KESHAB K, et al Seizure prediction with spectral power of EEG using cost-sensitive support vector machines[J]. Epilepsia, 2011, 52 (10): 1761- 1770
doi: 10.1111/j.1528-1167.2011.03138.x
[8]
ALARCON G, BINNIE C D, ELWES R D C, et al Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy[J]. Electroencephalography and Clinical Neurophysiology, 1995, 94 (5): 326- 337
doi: 10.1016/0013-4694(94)00286-T
[9]
SLAWSKI M Fisher's linear discriminant analysis[J]. Department of Computer Science, 2015, 16 (94): 237- 280
[10]
PIERO P, FRANCOIS D, JEAN G Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology[J]. Brain, 2014, 137 (1): 183- 196
doi: 10.1093/brain/awt299
[11]
FKREUZ M On the predictability of epileptic seizures[J]. Dkgest of the World Latest Medical Information, 2005, 116 (3): 569- 587
[12]
FLORIAN M, ANDRZEJAK R G, ELGER C E, et al Seizure prediction: the long and winding road[J]. Brain, 2007, 130 (2): 314- 333
[13]
LITT B, ECHAUZ J Prediction of epileptic seizures[J]. Lancet Neurology, 2002, 1 (1): 22- 30
doi: 10.1016/S1474-4422(02)00003-0
[14]
JACOBS J, STABA R, ASANO E, et al High-frequency oscillations (HFOs) in clinical epilepsy[J]. Progress in Neurobiology, 2012, 98 (3): 302- 315
doi: 10.1016/j.pneurobio.2012.03.001
[15]
OUYANG G, LI X, LI Y, et al Application of wavelet-based similarity analysis to epileptic seizures prediction[J]. Computers in Biology and Medicine, 2007, 37 (4): 430- 437
doi: 10.1016/j.compbiomed.2006.08.010
[16]
LUIGI C, ANTONIO M, GUIDO P, et al Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57 (5): 1124- 1132
doi: 10.1109/TBME.2009.2038990
[17]
IASEMIDIS L D, SACKELLARES J C, ZAVERI H P, et al Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures[J]. Brain Topography, 1990, 2 (3): 187- 201
doi: 10.1007/BF01140588
[18]
IASEMIDIS L D Epileptic seizure prediction and control[J]. IEEE Transactions on Biomedical Engineering, 2003, 50 (5): 549- 558
doi: 10.1109/TBME.2003.810705
[19]
SILVA F H L D, WOUTER B, KALITZIN STILIYAN N, et al Dynamical diseases of brain systems: different routes to epileptic seizures[J]. IEEE Transactions on Bio-medical Engineering, 2003, 50 (5): 540- 8
doi: 10.1109/TBME.2003.810703
[20]
NOACHTAR S, RéMI J The role of EEG in epilepsy: acritical review[J]. Epilepsy and Behavior, 2009, 15 (1): 22- 33
doi: 10.1016/j.yebeh.2009.02.035
[21]
UHLHAAS P J, SINGER W Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52 (1): 155- 168
doi: 10.1016/j.neuron.2006.09.020
[22]
FLORIAN M, ANDRZEJAK RALPH G, THOMAS K, et al Automated detection of a preseizure state based on a decrease in synchronizationin intracranial electroencephalogram recordings from epilepsy patients[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2003, 67 (1): 021912
[23]
KASPAR S, HOWAN L, ELGER CHRISTIAN E, et al Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG[J]. Brain, 2007, 130 (1): 65- 77
[24]
WILLIAMSON J R, BLISS D W, BROWNE D W, et al Seizure prediction using EEG spatiotemporal correlation structure[J]. Epilepsy and Behavior, 2012, 25 (2): 230- 238
doi: 10.1016/j.yebeh.2012.07.007
[25]
ASSI E B, SAWAN M, NGUYEN D K, et al. A hybrid mRMR-genetic based selection method for the prediction of epileptic seizures [C]// 2015 IEEE Biomedical Circuits and Systems Conference. Atlanta: [s.n.], 2015: 1−4.
[26]
DIREITO B, VENTURA F, TEIXEIRA C, et al. Optimized feature subsets for epileptic seizure prediction studies [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: [s.n.], 2011: 1636−1639.
[27]
ZHANG Z, PARHI K K Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10 (3): 693- 706
doi: 10.1109/TBCAS.2015.2477264
[28]
BIRJANDTALAB J, POUYAN M B, COGAN D, et al Automated seizure detection using limited-channel EEG and non-linear dimension reduction[J]. Computers in Biology and Medicine, 2017, 82 (C): 49- 58
[29]
GOLDBERGER A L, AMARAL L A, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): 215- 220
[30]
WENDLING F, CHAUVEL P, BIRABEN A, et al From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy[J]. Frontiers in Systems Neuroscience, 2010, 4: 154
[31]
WANG Q, TIAN X, LIU Z. Seizure prediction in eeg records based on spatial-frequency features and preictal period selection [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: [s.n.], 2018: 5354–5357.
[32]
MYERS M H, PADMANABHA A, HOSSAIN G, et al Seizure prediction and detection via phase and amplitude lock values[J]. Frontiers in Human Neuroscience, 2016, 10: 80
[33]
CONSUL S, MORSHED B I, KOZMA R. Hardware efficient seizure prediction algorithm [J]. SpieNanosensors, Biosensors, and Info-Tech Sensors and Systems, 2013, 8691: 1–10.
[34]
CHU H, CHUNG C K, JEONG W, et al Predicting epileptic seizures from scalp EEG based on attractor state analysis[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 75- 87
[35]
ALOTAIBY T N, ALSHEBEILI S A, ALOTAIBI F M, et al Epileptic seizure prediction using CSP and LDA for scalp EEG signals[J]. Computational Intelligence and Neuroscience, 2017, (6): 1- 11