Impact load identification and response reconstruction based on updating-combination regularization
Hong YIN1(),Yonghe SHI1,Zhenrui PENG1,*(),Zenghui WANG2
1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
An impact load identification and structural response reconstruction method based on the updating-combination regularization was proposed aiming at the problems of low accuracy in identifying peak impact loads, oscillation in identifying non loading areas, and susceptibility to noise interference in traditional regularization methods for structural response reconstruction. The reconstruction equations for the impact load and structure response were derived based on the state space model. The difference between the denoised response and the identification response was used to update the L2 regularization solution. Then higher accuracy peak identification results were obtained combining with the L1 regularization solution that had sparsity advantage while ensuring the stability of the identification of impact load in unloaded region, which realized the reconstruction of structural dynamic responses. The proposed method was verified through numerical and experimental cases, and the effect of response reconstruction based on the transfer matrix method and the particle filter method was compared. Results show that the proposed method has good anti-noise performance. The method can accurately recognize the impact load, and effectively reconstruct the dynamic response of the structure.
Hong YIN,Yonghe SHI,Zhenrui PENG,Zenghui WANG. Impact load identification and response reconstruction based on updating-combination regularization. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1029-1039.
Fig.2Flow chart for load identification and response reconstruction
Fig.3Finite element model of wheelset
Fig.4Picard diagram
Fig.5GCV function diagram
Fig.6Impact load identification results by different regularization methods
噪声因子
RPEf
L2正则化
L1正则化
Luc正则化
0.03
11.40
10.28
4.45
0.05
13.19
11.40
3.60
0.10
17.31
16.53
3.65
0.30
26.63
31.08
7.86
Tab.1Load recognition errors under different noises %
Fig.7Response reconstruction results of D and E nodes
Fig.8Response reconstruction errors by different regularization methods
重构方法
正则化方法
RPEY
D节点 速度
D节点 加速度
E节点 速度
E节点 加速度
传递 矩阵法
L2
6.15
8.12
6.01
8.14
L1
4.46
10.04
4.35
10.05
Luc
0.90
1.44
0.88
1.44
粒子 滤波法
L2
6.15
8.12
6.01
8.13
L1
4.47
10.04
4.35
10.05
Luc
0.90
1.45
0.89
1.45
Tab.2Reconstruction errors by different methods %
Fig.9Extending beam
Fig.10Framework diagram of modal test on extending beam
Fig.11Picard diagram
Fig.12GCV function diagram
Fig.13Impact load identification results by different regularization methods
Fig.14Results of response reconstruction
重构方法
正则化方法
RPEY
第8节点加速度
第17节点加速度
传递矩阵法
L2
17.34
17.47
L1
14.67
14.37
Luc
17.59
11.72
粒子滤波法
L2
4.93
5.61
L1
5.86
5.87
Luc
17.39
8.02
Tab.3Comparison of reconstruction errors under different regularization methods %
重构方法
正则化方法
RPEY
第8节点加速度
第17节点加速度
传递矩阵法
L2
14.93
17.89
L1
12.43
15.15
Luc
9.15
8.61
Tab.4Comparison of reconstruction errors by different regularization methods without considering model errors %
[1]
苏永振. 航空材料结构低速冲击健康监测研究[D]. 南京: 南京航空航天大学, 2010. SU Yongzhen. Research on low velocity impact health monitoring methods for aeronautical materials structures [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[2]
GUO J, HE J X Dynamic response analysis of ship-bridge collisions experiment[J]. Journal of Zhejiang University: Science A, 2020, 21 (7): 525- 534
doi: 10.1631/jzus.A1900382
[3]
豆硕, 刘志明, 王文静, 等 基于冲击响应谱高速列车设备冲击环境特性分析[J]. 中南大学学报:自然科学版, 2022, 53 (5): 1843- 1854 DOU Shuo, LIU Zhiming, WANG Wenjing, et al Analysis of shock environment characteristics of high-speed train equipment based on shock response spectrum[J]. Journal of Central South University: Science and Technology, 2022, 53 (5): 1843- 1854
[4]
LIN M X, GUO S J, HE Shun, et al Structure health monitoring of a composite wing based on flight load and strain data using deep learning method[J]. Composite Structures, 2022, 286: 115305
doi: 10.1016/j.compstruct.2022.115305
[5]
ZHANG C W, MOUSAVI A A, MASRI S F, et al Vibration feature extraction using signal processing techniques for structural health monitoring: a review[J]. Mechanical Systems and Signal Processing, 2022, 177: 109175
doi: 10.1016/j.ymssp.2022.109175
[6]
房芳, 郑辉, 汪玉, 等 机械结构健康监测综述[J]. 机械工程学报, 2021, 57 (16): 269- 292 FANG Fang, ZHENG Hui, WANG Yu, et al Mechanical structural health monitoring: a review[J]. Journal of Mechanical Engineering, 2021, 57 (16): 269- 292
doi: 10.3901/JME.2021.16.269
[7]
邱雨晴, 王磊, 王晓宇, 等 基于改进函数拟合法的冲击载荷识别研究[J]. 机械工程学报, 2022, 58 (3): 157- 166 QIU Yuqing, WANG Lei, WANG Xiaoyu, et al Research on impact force reconstruction based on improved function fitting method[J]. Journal of Mechanical Engineering, 2022, 58 (3): 157- 166
doi: 10.3901/JME.2022.03.157
[8]
LIU R X, DOBRIBAN E, HOU Z C, et al Dynamic load identification for mechanical systems: a review[J]. Archives of Computational Methods in Engineering, 2022, 29 (2): 831- 863
doi: 10.1007/s11831-021-09594-7
[9]
SUN L M, LI Y X, ZHU W, et al Structural response reconstruction in physical coordinate from deficient measurements[J]. Engineering Structures, 2020, 212: 110484
doi: 10.1016/j.engstruct.2020.110484
[10]
ZHU Z M, ZHU S Y, WANG Y W, et al Structural dynamic response reconstruction with multi-type sensors, unknown input, and rank deficient feedthrough matrix[J]. Mechanical Systems and Signal Processing, 2023, 187: 109935
doi: 10.1016/j.ymssp.2022.109935
[11]
YANG J S, FU Z Y, ZOU Y F, et al A response reconstruction method based on empirical mode decomposition and modal synthesis method[J]. Mechanical Systems and Signal Processing, 2023, 184: 109716
doi: 10.1016/j.ymssp.2022.109716
[12]
邹云峰, 付正亿, 何旭辉, 等 基于经验模态分解和模型缩聚的动力响应重构方法研究[J]. 工程力学, 2022, 39 (2): 67- 75 ZOU Yunfeng, FU Zhengyi, HE Xuhui, et al Dynamic response reconstruction method based on empirical mode decomposition and model condensation[J]. Engineering Mechanics, 2022, 39 (2): 67- 75
[13]
HE J J, GUAN X F, LIU Y M Structural response reconstruction based on empirical mode decomposition in time domain[J]. Mechanical Systems and Signal Processing, 2012, 28: 348- 366
doi: 10.1016/j.ymssp.2011.12.010
[14]
RIBEIRO A M R, SILVA J M M, MAIA N M M On the generalisation of the transmissibility concept[J]. Mechanical Systems and Signal Processing, 2000, 14 (1): 29- 35
doi: 10.1006/mssp.1999.1268
[15]
LAW S S, LI J, DING Y Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25 (3): 952- 968
doi: 10.1016/j.ymssp.2010.10.001
[16]
毛羚, 李书进, 张洲 未知输入下基于响应重构的结构损伤识别[J]. 土木工程与管理学报, 2018, 35 (3): 87- 95 MAO Ling, LI Shujin, ZHANG Zhou Structural damage identification based on response reconstruction under unknown input[J]. Journal of Civil Engineering and Management, 2018, 35 (3): 87- 95
[17]
张笑华, 任伟新, 方圣恩 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33 (18): 26- 30 ZHANG Xiaohua, REN Weixin, FANG Shengen Location optimization of dual-type sensors for multi-kind structural response reconstruction[J]. Journal of Sound and Vibration, 2014, 33 (18): 26- 30
[18]
ZHANG X H, ZHU Z M, YUAN G K, et al Adaptive mode selection integrating Kalman filter for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2021, 515: 116497
doi: 10.1016/j.jsv.2021.116497
[19]
史鹏程, 彭珍瑞, 董康立 基于有限测量信息的两步响应重构方法[J]. 振动与冲击, 2022, 41 (11): 291- 297 SHI Pengcheng, PENG Zhenrui, DONG Kangli Two-step response reconstruction method based on limited measured information[J]. Journal of Vibration and Shock, 2022, 41 (11): 291- 297
[20]
崔洪宇, 胡大士, 孔帅, 等 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61 (1): 109- 119 CUI Hongyu, HU Dashi, KONG Shuai, et al Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61 (1): 109- 119
[21]
乔百杰, 陈雪峰, 刘金鑫, 等 机械结构冲击载荷稀疏识别方法研究[J]. 机械工程学报, 2019, 55 (3): 81- 89 QIAO Baijie, CHEN Xuefeng, LIU Jinxin, et al Sparse identification of impact force acting on mechanical structures[J]. Journal of Mechanical Engineering, 2019, 55 (3): 81- 89
doi: 10.3901/JME.2019.03.081
[22]
SHI Y H, YIN H, PENG Z R, et al Structural response reconstruction based on the information fusion of multi-source particle filters[J]. Journal of Mechanical Science and Technology, 2023, 37 (2): 631- 641
doi: 10.1007/s12206-023-0108-3
[23]
马超, 华宏星 一种基于新的正则化技术的冲击载荷识别法[J]. 振动与冲击, 2015, 34 (12): 164- 168 MA Chao, HUA Hongxing Impact force identification based on improved regularization technique[J]. Journal of Vibration and Shock, 2015, 34 (12): 164- 168
[24]
常晓通, 闫云聚, 刘鎏, 等 基于Green函数和正则化的动态载荷识别方法[J]. 振动, 测试与诊断, 2014, 34 (1): 124- 129 CHANG Xiaotong, YAN Yunju, LIU Liu, et al Applications of regulation method in dynamic load identification[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34 (1): 124- 129
[25]
HANSEN P C. The L-curve and its use in the numerical treatment of inverse problems [M]//JOHNSTON P. Computational Inverse Problems in Electrocardiology . Southampton: WIT Press, 2001: 119-142.
[26]
MAO Y M, GUO X L, ZHAO Y A state space force identification method based on Markov parameters precise computation and regularization technique[J]. Journal of Sound and Vibration, 2010, 329 (15): 3008- 3019
doi: 10.1016/j.jsv.2010.02.012
[27]
LIU J, LI B A novel strategy for response and force reconstruction under impact excitation[J]. Journal of Mechanical Science and Technology, 2018, 32 (8): 3581- 3596
doi: 10.1007/s12206-018-0709-4
[28]
FIGUEIREDO M A T, NOWAK R D, WRIGHT S Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4): 586- 597
doi: 10.1109/JSTSP.2007.910281
[29]
DONOHO D L, TSAIG Y, DRORI I, et al Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58 (2): 1094- 1121
doi: 10.1109/TIT.2011.2173241
[30]
DAUBECHIES I, DEFRISE M, MOL C An iterative thresholding algorithm for linear inverse problems with a sparsity constrains[J]. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1541
doi: 10.1002/cpa.20042
[31]
熊春宝, 于丽娜, 常翔宇 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报:自然科学与工程技术版, 2020, 53 (4): 378- 385 XIONG Chunbao, YU Lina, CHANG Xiangyu Modal parameter identification of bridge structures based on EEMD-wavelet threshold denoising[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (4): 378- 385
[32]
赵永翔, 高庆, 张斌, 等 轨道车辆轮对的关键力学问题及研究进展[J]. 固体力学学报, 2010, 31 (6): 716- 730 ZHAO Yongxiang, GAO Qing, ZHANG Bin, et al Key solid mechanics issues and research progresses for railway vehicle wheelset[J]. Chinese Journal of Solid Mechanics, 2010, 31 (6): 716- 730