Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1029-1039    DOI: 10.3785/j.issn.1008-973X.2024.05.016
    
Impact load identification and response reconstruction based on updating-combination regularization
Hong YIN1(),Yonghe SHI1,Zhenrui PENG1,*(),Zenghui WANG2
1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download: HTML     PDF(2579KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An impact load identification and structural response reconstruction method based on the updating-combination regularization was proposed aiming at the problems of low accuracy in identifying peak impact loads, oscillation in identifying non loading areas, and susceptibility to noise interference in traditional regularization methods for structural response reconstruction. The reconstruction equations for the impact load and structure response were derived based on the state space model. The difference between the denoised response and the identification response was used to update the L2 regularization solution. Then higher accuracy peak identification results were obtained combining with the L1 regularization solution that had sparsity advantage while ensuring the stability of the identification of impact load in unloaded region, which realized the reconstruction of structural dynamic responses. The proposed method was verified through numerical and experimental cases, and the effect of response reconstruction based on the transfer matrix method and the particle filter method was compared. Results show that the proposed method has good anti-noise performance. The method can accurately recognize the impact load, and effectively reconstruct the dynamic response of the structure.



Key wordsresponse reconstruction      impact load      regularization      transfer matrix      particle filter     
Received: 30 November 2022      Published: 26 April 2024
CLC:  O 327  
  TH 113  
Fund:  国家自然科学基金资助项目(62161018);甘肃省“创新之星”资助项目(2022CXZX-569).
Corresponding Authors: Zhenrui PENG     E-mail: yinhong@mail.lzjtu.cn;pzrui@163.com
Cite this article:

Hong YIN,Yonghe SHI,Zhenrui PENG,Zenghui WANG. Impact load identification and response reconstruction based on updating-combination regularization. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1029-1039.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1029


修正-联合正则化的冲击载荷识别与响应重构

针对传统结构响应重构中正则化方法对冲击载荷峰值识别精度低、非加载区识别结果振荡且识别精度易受噪声干扰等问题,提出基于修正-联合正则化的冲击载荷识别与结构响应重构方法. 基于状态空间模型,推导冲击载荷及结构响应的重构方程. 对测量响应降噪,利用降噪后响应与识别响应的差值修正L2正则化解. 联合L1正则化解的稀疏性优势,在保证冲击载荷非加载区域识别稳定的同时,获得更高精度的峰值识别结果,实现结构动态响应的重构. 通过数值和实验案例验证了所提方法的有效性,对比了传递矩阵法和粒子滤波法的响应重构效果. 结果表明,所提方法具有良好的抗噪性,能够较准确地识别冲击载荷,有效地重构结构动态响应.


关键词: 响应重构,  冲击载荷,  正则化,  传递矩阵,  粒子滤波 
Fig.1 Load identification cases
Fig.2 Flow chart for load identification and response reconstruction
Fig.3 Finite element model of wheelset
Fig.4 Picard diagram
Fig.5 GCV function diagram
Fig.6 Impact load identification results by different regularization methods
噪声因子RPEf
L2正则化L1正则化Luc正则化
0.0311.4010.284.45
0.0513.1911.403.60
0.1017.3116.533.65
0.3026.6331.087.86
Tab.1 Load recognition errors under different noises %
Fig.7 Response reconstruction results of D and E nodes
Fig.8 Response reconstruction errors by different regularization methods
重构方法正则化方法RPEY
D节点
速度
D节点
加速度
E节点
速度
E节点
加速度
传递
矩阵法
L26.158.126.018.14
L14.4610.044.3510.05
Luc0.901.440.881.44
粒子
滤波法
L26.158.126.018.13
L14.4710.044.3510.05
Luc0.901.450.891.45
Tab.2 Reconstruction errors by different methods %
Fig.9 Extending beam
Fig.10 Framework diagram of modal test on extending beam
Fig.11 Picard diagram
Fig.12 GCV function diagram
Fig.13 Impact load identification results by different regularization methods
Fig.14 Results of response reconstruction
重构方法正则化方法RPEY
第8节点加速度第17节点加速度
传递矩阵法L217.3417.47
L114.6714.37
Luc17.5911.72
粒子滤波法L24.935.61
L15.865.87
Luc17.398.02
Tab.3 Comparison of reconstruction errors under different regularization methods                  %
重构方法正则化方法RPEY
第8节点加速度第17节点加速度
传递矩阵法L214.9317.89
L112.4315.15
Luc9.158.61
Tab.4 Comparison of reconstruction errors by different regularization methods without considering model errors      %
[1]   苏永振. 航空材料结构低速冲击健康监测研究[D]. 南京: 南京航空航天大学, 2010.
SU Yongzhen. Research on low velocity impact health monitoring methods for aeronautical materials structures [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[2]   GUO J, HE J X Dynamic response analysis of ship-bridge collisions experiment[J]. Journal of Zhejiang University: Science A, 2020, 21 (7): 525- 534
doi: 10.1631/jzus.A1900382
[3]   豆硕, 刘志明, 王文静, 等 基于冲击响应谱高速列车设备冲击环境特性分析[J]. 中南大学学报:自然科学版, 2022, 53 (5): 1843- 1854
DOU Shuo, LIU Zhiming, WANG Wenjing, et al Analysis of shock environment characteristics of high-speed train equipment based on shock response spectrum[J]. Journal of Central South University: Science and Technology, 2022, 53 (5): 1843- 1854
[4]   LIN M X, GUO S J, HE Shun, et al Structure health monitoring of a composite wing based on flight load and strain data using deep learning method[J]. Composite Structures, 2022, 286: 115305
doi: 10.1016/j.compstruct.2022.115305
[5]   ZHANG C W, MOUSAVI A A, MASRI S F, et al Vibration feature extraction using signal processing techniques for structural health monitoring: a review[J]. Mechanical Systems and Signal Processing, 2022, 177: 109175
doi: 10.1016/j.ymssp.2022.109175
[6]   房芳, 郑辉, 汪玉, 等 机械结构健康监测综述[J]. 机械工程学报, 2021, 57 (16): 269- 292
FANG Fang, ZHENG Hui, WANG Yu, et al Mechanical structural health monitoring: a review[J]. Journal of Mechanical Engineering, 2021, 57 (16): 269- 292
doi: 10.3901/JME.2021.16.269
[7]   邱雨晴, 王磊, 王晓宇, 等 基于改进函数拟合法的冲击载荷识别研究[J]. 机械工程学报, 2022, 58 (3): 157- 166
QIU Yuqing, WANG Lei, WANG Xiaoyu, et al Research on impact force reconstruction based on improved function fitting method[J]. Journal of Mechanical Engineering, 2022, 58 (3): 157- 166
doi: 10.3901/JME.2022.03.157
[8]   LIU R X, DOBRIBAN E, HOU Z C, et al Dynamic load identification for mechanical systems: a review[J]. Archives of Computational Methods in Engineering, 2022, 29 (2): 831- 863
doi: 10.1007/s11831-021-09594-7
[9]   SUN L M, LI Y X, ZHU W, et al Structural response reconstruction in physical coordinate from deficient measurements[J]. Engineering Structures, 2020, 212: 110484
doi: 10.1016/j.engstruct.2020.110484
[10]   ZHU Z M, ZHU S Y, WANG Y W, et al Structural dynamic response reconstruction with multi-type sensors, unknown input, and rank deficient feedthrough matrix[J]. Mechanical Systems and Signal Processing, 2023, 187: 109935
doi: 10.1016/j.ymssp.2022.109935
[11]   YANG J S, FU Z Y, ZOU Y F, et al A response reconstruction method based on empirical mode decomposition and modal synthesis method[J]. Mechanical Systems and Signal Processing, 2023, 184: 109716
doi: 10.1016/j.ymssp.2022.109716
[12]   邹云峰, 付正亿, 何旭辉, 等 基于经验模态分解和模型缩聚的动力响应重构方法研究[J]. 工程力学, 2022, 39 (2): 67- 75
ZOU Yunfeng, FU Zhengyi, HE Xuhui, et al Dynamic response reconstruction method based on empirical mode decomposition and model condensation[J]. Engineering Mechanics, 2022, 39 (2): 67- 75
[13]   HE J J, GUAN X F, LIU Y M Structural response reconstruction based on empirical mode decomposition in time domain[J]. Mechanical Systems and Signal Processing, 2012, 28: 348- 366
doi: 10.1016/j.ymssp.2011.12.010
[14]   RIBEIRO A M R, SILVA J M M, MAIA N M M On the generalisation of the transmissibility concept[J]. Mechanical Systems and Signal Processing, 2000, 14 (1): 29- 35
doi: 10.1006/mssp.1999.1268
[15]   LAW S S, LI J, DING Y Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25 (3): 952- 968
doi: 10.1016/j.ymssp.2010.10.001
[16]   毛羚, 李书进, 张洲 未知输入下基于响应重构的结构损伤识别[J]. 土木工程与管理学报, 2018, 35 (3): 87- 95
MAO Ling, LI Shujin, ZHANG Zhou Structural damage identification based on response reconstruction under unknown input[J]. Journal of Civil Engineering and Management, 2018, 35 (3): 87- 95
[17]   张笑华, 任伟新, 方圣恩 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33 (18): 26- 30
ZHANG Xiaohua, REN Weixin, FANG Shengen Location optimization of dual-type sensors for multi-kind structural response reconstruction[J]. Journal of Sound and Vibration, 2014, 33 (18): 26- 30
[18]   ZHANG X H, ZHU Z M, YUAN G K, et al Adaptive mode selection integrating Kalman filter for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2021, 515: 116497
doi: 10.1016/j.jsv.2021.116497
[19]   史鹏程, 彭珍瑞, 董康立 基于有限测量信息的两步响应重构方法[J]. 振动与冲击, 2022, 41 (11): 291- 297
SHI Pengcheng, PENG Zhenrui, DONG Kangli Two-step response reconstruction method based on limited measured information[J]. Journal of Vibration and Shock, 2022, 41 (11): 291- 297
[20]   崔洪宇, 胡大士, 孔帅, 等 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61 (1): 109- 119
CUI Hongyu, HU Dashi, KONG Shuai, et al Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61 (1): 109- 119
[21]   乔百杰, 陈雪峰, 刘金鑫, 等 机械结构冲击载荷稀疏识别方法研究[J]. 机械工程学报, 2019, 55 (3): 81- 89
QIAO Baijie, CHEN Xuefeng, LIU Jinxin, et al Sparse identification of impact force acting on mechanical structures[J]. Journal of Mechanical Engineering, 2019, 55 (3): 81- 89
doi: 10.3901/JME.2019.03.081
[22]   SHI Y H, YIN H, PENG Z R, et al Structural response reconstruction based on the information fusion of multi-source particle filters[J]. Journal of Mechanical Science and Technology, 2023, 37 (2): 631- 641
doi: 10.1007/s12206-023-0108-3
[23]   马超, 华宏星 一种基于新的正则化技术的冲击载荷识别法[J]. 振动与冲击, 2015, 34 (12): 164- 168
MA Chao, HUA Hongxing Impact force identification based on improved regularization technique[J]. Journal of Vibration and Shock, 2015, 34 (12): 164- 168
[24]   常晓通, 闫云聚, 刘鎏, 等 基于Green函数和正则化的动态载荷识别方法[J]. 振动, 测试与诊断, 2014, 34 (1): 124- 129
CHANG Xiaotong, YAN Yunju, LIU Liu, et al Applications of regulation method in dynamic load identification[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34 (1): 124- 129
[25]   HANSEN P C. The L-curve and its use in the numerical treatment of inverse problems [M]//JOHNSTON P. Computational Inverse Problems in Electrocardiology . Southampton: WIT Press, 2001: 119-142.
[26]   MAO Y M, GUO X L, ZHAO Y A state space force identification method based on Markov parameters precise computation and regularization technique[J]. Journal of Sound and Vibration, 2010, 329 (15): 3008- 3019
doi: 10.1016/j.jsv.2010.02.012
[27]   LIU J, LI B A novel strategy for response and force reconstruction under impact excitation[J]. Journal of Mechanical Science and Technology, 2018, 32 (8): 3581- 3596
doi: 10.1007/s12206-018-0709-4
[28]   FIGUEIREDO M A T, NOWAK R D, WRIGHT S Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4): 586- 597
doi: 10.1109/JSTSP.2007.910281
[29]   DONOHO D L, TSAIG Y, DRORI I, et al Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58 (2): 1094- 1121
doi: 10.1109/TIT.2011.2173241
[30]   DAUBECHIES I, DEFRISE M, MOL C An iterative thresholding algorithm for linear inverse problems with a sparsity constrains[J]. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1541
doi: 10.1002/cpa.20042
[31]   熊春宝, 于丽娜, 常翔宇 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报:自然科学与工程技术版, 2020, 53 (4): 378- 385
XIONG Chunbao, YU Lina, CHANG Xiangyu Modal parameter identification of bridge structures based on EEMD-wavelet threshold denoising[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (4): 378- 385
[32]   赵永翔, 高庆, 张斌, 等 轨道车辆轮对的关键力学问题及研究进展[J]. 固体力学学报, 2010, 31 (6): 716- 730
ZHAO Yongxiang, GAO Qing, ZHANG Bin, et al Key solid mechanics issues and research progresses for railway vehicle wheelset[J]. Chinese Journal of Solid Mechanics, 2010, 31 (6): 716- 730
[33]   谭祥军. 从这里学NVH: 噪声、振动、模态分析的入门与进阶[M]. 北京: 机械工业出版社, 2018.
[1] Tingfang TAN,Wanyuan CAI,Junzheng JIANG. Image foreground-background segmentation method based on sparse decomposition and graph Laplacian regularization[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 979-987.
[2] Hai-jun WANG,Sheng-yan ZHANG,Yu-jie DU. UAV object tracking algorithm based on response and filter deviation-aware regularization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1824-1832.
[3] Fei SUN,Xiao-run LI,Liao-ying ZHAO,Shao-qi YU. Anomaly detection algorithm based on FrFT transform and total variation regularization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1276-1284.
[4] Chang-yuan LIU,Xian-ping HE,Xiao-jun BI. Efficient network vehicle recognition combined with attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 775-782.
[5] Qiang GUO,Tian-hao WU,Wei XU,Mykola KALIUZHNY. Target tracking algorithm based on channel reliability and aberrance repression[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2379-2391.
[6] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[7] Zhen JIA,Wen-de DONG,Gui-li XU,Shi-peng ZHU. Image Poisson denoising algorithm based on Markov fields of experts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1164-1169.
[8] YE Peng-zhao, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Blind restoration of compressed degraded image based onblock effect suppression[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 406-412.
[9] PAN Qiu-ping, WANG Zhen, GAN De-qiang, XIE Huan, LI Shang-yuan. Comparison of numerical differentiation based damping sensitivity method[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 174-183.
[10] OU YANG-qing, LI Zhao-chun,ZHENG Jia-jia, WANG Jiong. Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 961-968.
[11] JIANG Xin-long, CHEN Yi-qiang, LIU Jun-fa, HU Li-sha, SHEN Jian-fei. Wearable system to support proximity awareness for people with autism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 637-647.
[12] CHEN Guo-xin, CHEN Sheng-chang. Regularization method with p-norm sparsity constraints for potential field data reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 748-785.
[13] KANG Yi-fei, SONG Yong-duan, SONG Yu, YAN De-li. Simultaneous localization and mapping without relying on odometer[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 414-422.
[14] PAN Jun, KONG Fan-sheng, WANG Rui-qin. Locality sensitive discriminant transductive learning[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 987-994.
[15] XIAO Dong-feng, YANG Chun-jie,SONG Zhi-huan. The forecasting model of blast furnace gas output
based on improved BP network
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 2103-2108.