1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China 2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin 150001, China 3. Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
A target tracking algorithm based on channel reliability and aberrance repression was proposed, aiming at the problem that the spatial-temporal regularized target tracking algorithm could not effectively use features and the filter was inclined to learn from the background since the algorithm expanded the search area in order to alleviate the boundary effect. The channel regularization term was constructed, and the corresponding weights of different feature channels were solved in the training stage to realize the weighting of different feature channels, which reduced channel redundancy and improved the positioning accuracy. The aberrance repression regularization term was added to the objective function to constrain the response map of the current frame and realize the smooth constraint of the filter model. The alternating direction multiplier method was used to transform the objective problem into the optimal solution of the filter, auxiliary factor and channel weight. The proposed method was tested on public datasets such as OTB2015, TempleColor128 and UAV20L, and compared with other tracking algorithms. Experimental results show that the tracking effect of the proposed algorithm is stable under fast motion as well as illumination variation, and it basically meets the real-time requirements.
Qiang GUO,Tian-hao WU,Wei XU,Mykola KALIUZHNY. Target tracking algorithm based on channel reliability and aberrance repression. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2379-2391.
Fig.1Weight visualization of different feature channels
Fig.2Schematic diagram of video sequence anomaly analysis
Fig.3Flow chart of target tracking algorithm based on channel reliability and aberrance repression
Fig.4Curves of distance precision and area under curve of different algorithms on OTB2015 dataset
算法
$v $
OTB2015
TempleColor128
UAV20L
帧/s
本研究
21.90
19.48
17.25
BACF
35.44
36.75
27.13
STRCF
24.28
21.31
19.17
SRDCF
7.60
8.42
6.04
SRDCFDecon
2.01
3.09
3.38
ARCF
17.80
16.49
16.08
AutoTrack
28.44
27.52
23.46
DRCF
25.25
29.61
27.12
ECO_HC
59.39
58.64
63.21
HCF
1.97
1.92
6.70
HDT
3.69
3.57
2.88
FAST
72.87
44.94
82.12
SITUP
27.79
19.52
10.61
LCT
22.79
25.26
29.54
KCF
234.19
240.64
235.62
Tab.1Comparison of average tracking speed of different algorithms on three datasets
Fig.5Curves of distance precision and area under curve of different algorithms on TempleColor128 dataset
Fig.6Curves of distance precision and area under curve of different algorithms on UAV20L dataset
算法
DP
IV
SV
OC
DEF
MB
FM
IPR
OPR
OV
BC
LR
%
本研究
84.6
85.0
82.6
84.6
84.3
81.7
82.4
86.1
79.9
88.2
74.5
BACF
80.3
76.9
73.0
76.4
74.5
79.0
79.2
78.1
75.6
80.5
74.1
STRCF
83.7
84.0
81.0
84.1
82.6
80.2
81.1
85.0
76.6
87.2
73.7
DeepSRDCF
78.6
81.7
82.2
77.9
82.3
81.4
81.8
83.5
78.1
84.1
70.8
SRDCF
78.1
74.3
72.7
73.0
76.7
76.9
74.2
74.0
60.3
77.5
66.3
SRDCFDecon
83.3
80.3
76.5
75.0
81.4
77.5
77.6
79.7
64.1
85.0
64.4
ARCF
76.3
77.0
73.7
76.7
75.7
76.8
78.5
76.9
67.1
76.0
74.9
AutoTrack
78.3
74.2
73.5
73.5
73.5
74.6
77.7
76.6
69.6
75.5
77.3
DRCF
71.8
67.6
67.0
72.0
71.8
74.5
69.4
69.2
61.1
76.2
62.1
ECO_HC
77.5
79.2
77.7
79.3
77.0
79.9
76.2
80.1
76.4
80.7
84.7
HCF
83.0
79.8
77.6
79.0
80.4
81.5
86.4
81.6
67.7
84.3
83.1
HDT
80.9
77.4
74.4
80.2
78.3
77.9
79.9
78.7
61.6
78.9
84.9
SiamFC
74.1
73.8
72.6
69.3
70.5
74.3
74.2
75.6
66.9
69.0
84.7
FAST
76.7
70.8
70.8
70.0
61.3
64.2
73.0
77.0
61.3
77.3
71.9
SITUP
73.5
74.5
73.8
69.7
70.7
70.2
73.9
76.6
66.9
77.6
68.4
LCT
74.3
67.8
67.8
68.5
67.0
68.1
78.1
74.6
59.2
73.4
53.7
KCF
72.4
63.5
63.2
61.9
60.0
62.1
70.1
67.6
50.0
71.3
56.0
Tab.2Distance Precision of different algorithms on OTB2015 dataset with different attributes
算法
AUC
IV
SV
OC
DEF
MB
FM
IPR
OPR
OV
BC
LR
%
本研究
66.6
63.6
62.8
61.8
66.4
63.5
60.7
63.7
60.2
66.3
54.6
BACF
62.2
57.2
56.5
57.1
57.5
59.9
58.2
57.8
54.8
60.5
53.2
STRCF
65.2
63.1
61.4
60.5
65.2
62.8
60.2
62.6
58.3
64.7
53.8
DeepSRDCF
62.4
60.7
60.3
56.7
64.2
62.8
58.9
60.7
55.3
62.7
47.5
SRDCF
60.7
55.9
55.4
54.1
59.4
59.7
54.1
54.7
46.1
58.2
49.5
SRDCFDecon
64.7
60.7
58.8
55.2
63.9
60.6
57.3
59.1
51.0
64.1
49.2
ARCF
60.0
56.1
56.0
58.3
60.5
59.1
56.2
55.9
50.0
58.8
51.2
AutoTrack
60.4
54.2
55.5
55.9
58.5
58.3
55.4
55.5
53.4
56.2
54.0
DRCF
56.8
51.7
52.7
54.0
59.4
59.0
52.4
52.8
49.0
57.1
45.2
ECO_HC
60.3
59.2
58.7
58.7
60.4
61.8
55.3
58.7
56.0
60.3
58.9
HCF
55.0
48.5
53.3
53.0
58.5
57.0
56.6
54.0
47.4
58.5
43.9
HDT
52.9
47.7
52.2
54.0
57.7
55.5
53.6
52.8
45.3
54.4
46.3
SiamFC
57.4
55.6
54.7
51.0
55.0
56.8
55.7
55.8
50.6
52.3
59.2
FAST
59.8
52.1
53.6
51.1
50.1
50.7
53.5
56.4
47.8
58.9
50.8
SITUP
55.4
53.1
55.6
50.4
57.4
54.2
54.0
55.8
52.0
57.2
43.4
LCT
51.7
42.8
47.6
48.1
51.6
50.7
52.9
50.5
44.6
52.8
29.9
KCF
48.2
39.5
44.5
43.8
45.9
45.9
46.9
45.3
39.3
49.8
30.7
Tab.3Area under curve of different algorithms on OTB2015 dataset with different attributes
Fig.7Comparison of tracking results of different algorithms on video sequences
$ \lambda $
DP/%
$ \lambda $
DP/%
$ \lambda $
DP/%
0.01
84.9
0.04
86.2
0.07
86.1
0.02
85.9
0.05
86.9
0.08
86.2
0.03
86.3
0.06
85.9
0.09
85.9
Tab.4Distance precision under different channel reliability penalty coefficient
ρ
DP/%
ρ
DP/%
ρ
DP/%
0.010
86.5
0.060
86.4
0.069
86.6
0.020
86.3
0.065
86.7
0.070
87.0
0.030
85.7
0.066
86.6
0.080
87.1
0.040
86.2
0.067
86.6
0.090
86.5
0.050
87.1
0.068
87.3
—
—
Tab.5Distance precision under different aberrance repression penalty coefficient
算法
DP
AUC
%
本研究
87.3
66.1
Baseline+ARR
87.0
65.9
Baseline+CRR
86.9
65.7
Baseline
86.5
65.4
Tab.6Results of ablation experiment on OTB100 dataset
[1]
黄月平, 李小锋, 杨小冈, 等 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43 (8): 2051- 2065 HUANG Yue-ping, LI Xiao-feng, YANG Xiao-gang, et al Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43 (8): 2051- 2065
doi: 10.12305/j.issn.1001-506X.2021.08.05
[2]
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550.
[3]
HENRIQUES J F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
[4]
DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1090-1097.
[5]
WANG N Y, SHI J P, YEUNG D Y, et al. Understanding and diagnosing visual tracking systems [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3101-3109.
[6]
汤张泳, 吴小俊, 朱学峰 多空间分辨率自适应特征融合的相关滤波目标跟踪算法[J]. 模式识别与人工智能, 2020, 33 (1): 66- 74 TANG Zhang-yong, WU Xiao-jun, ZHU Xue-feng Object tracking with multi-spatial resolutions and adaptive feature fusion based on correlation filters[J]. Pattern Recognition and Artifical Intelligence, 2020, 33 (1): 66- 74
doi: 10.16451/j.cnki.issn1003-6059.202001008
[7]
熊昌镇, 王润玲, 邹建成 基于多高斯相关滤波的实时跟踪算法[J]. 浙江大学学报:工学版, 2019, 53 (8): 1488- 1495 XIONG Chang-zhen, WANG Run-ling, ZOU Jian-cheng Real-time tracking algorithm based on multiple Gaussian-distirbution correlation filters[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1488- 1495
[8]
GALOOGAHI H K, FAGG A, LUCEY S. Learning backg- round-aware correlation filters for visual tracking [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1144-1152.
[9]
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310-4318.
[10]
LI F, TIAN C, ZUO W M, et al. Learning spatial-temporal regularized correlation filters for visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904-4913.
[11]
尹明锋, 薄煜明, 朱建良, 等. 基于通道可靠性的多尺度背景感知相关滤波跟踪算法[J]. 光学学报. 2019, 39(5): 0515002. YIN Ming-feng, BO Yu-ming, ZHU Jian-liang, et al. Multi-scale context-aware correlation filter tracking algorithm based on channel reliability [J]. Acta Optica Sinica, 2019, 39(5): 0515002.
[12]
LU X K, MA C, NI B B, et al Adaptive region proposal with channel regularization for robust object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (4): 1268- 1282
doi: 10.1109/TCSVT.2019.2944654
[13]
XU T Y , FENG Z H, WU X J, et al. Joint group feature selection and discriminative filter learning for robust visual obj-ect tracking [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7950-7960.
[14]
YE J J, FU C H, LIN F L, et al Multi-regularized correlation filter for UAV tracking and self-localization[J]. IEEE Transactions on Industrial Electronics, 2021, 6004- 6014
[15]
WANG M M, LIU Y, HUANG Z Y. Large margin object tracking with circulant feature maps [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4800-4808.
[16]
HUANG Z Y, FU C H, LI Y M, et al. Learning aberrance repressed correlation filters for real-time UAV tracking [C]// Proceedings of the2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2891-2900.
[17]
LI Y M, FU C H, DING F Q, et al. AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11920-11929.
[18]
姜文涛, 刘晓璇, 涂潮, 等 空间异常适应性的目标跟踪[J]. 模式识别与人工智能, 2021, 34 (5): 473- 484 JIANG Wen-tao, LIU Xiao-xuan, TU Chao, et al Spatially abnormal adaptive target tracking[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (5): 473- 484
doi: 10.16451/j.cnki.issn1003-6059.202105010
[19]
BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Leaning, 2010, 3 (1): 1- 122
doi: 10.1561/2200000016
[20]
WU Y, LIM J, YANG M H Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848
doi: 10.1109/TPAMI.2014.2388226
[21]
LIANG P P, BLASCH E, LING H B. Encoding color info- rmation for visual tracking: algorithms and benchmark [J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644.
[22]
MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking [C]// 2016 European Conference on Computer Vision. Amsterdam: Springer, 2016: 445–461.
[23]
MA C, HUANG J B, YANG X, et al. Hierarchical convolutional features for visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3074-3082.
[24]
QI Y, ZHANG S, QIN L, et al. Hedged deep tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4303-4311.
[25]
DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking [C]// 2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 621-629.
[26]
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6931-6939.
[27]
DANELLJAN M, HÄGER G, KHAN F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas : IEEE, 2016: 1430-1438.
[28]
MA C, YANG X K, ZAHNG C Y, et al. Long-term correlation tracking [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 5388-5396.
[29]
MA H Y, ACTON S T, LIN Z L SITUP: scale invariant tracking using average peak-to-correlation energy[J]. IEEE Transactions on Image Processing, 2020, 29: 3546- 3557
doi: 10.1109/TIP.2019.2962694
[30]
MA H Y, LIN Z L, ACTON S T FAST: fast and accurate scale estimation for tracking[J]. IEEE Signal Processing Letters, 2020, 27: 161- 165
doi: 10.1109/LSP.2019.2963147
[31]
FU C H, XU J T, LIN F L, et al Object saliency-aware dual regularized correlation filter for real-time aerial tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (12): 8940- 8951
doi: 10.1109/TGRS.2020.2992301