Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 753-760    DOI: 10.3785/j.issn.1008-973X.2019.04.016
    
Underwater multi-target tracking using imaging sonar
Dan-xiang JING(),Jun HAN*(),Zhi-wei XU,Ying CHEN
Ocean College, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(1479KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An efficient target tracking algorithm based on an imaging sonar was proposed to solve the problem of underwater multi-target tracking. The echo signal model based on signal intensity was established for each pixel point in the acoustic image according to the imaging features of the sonar in order to extract the individual target from the images. The sequential Monte Carlo probability hypothesis density (SMCPHD) filtering was applied to the target states. The Auction track recognition algorithm was used to associate the filtered target states with the identified tracks, so that the multi-target tracking was realized. The simulation analysis of the algorithm showed that the proposed method was more efficient than the multi-target tracking algorithms based on data correlation, eg. joint probabilistic data association (JPDA) and multiple hypothesis tracking (MHT). A field experiment was conducted to collect the sonar data. The tracking trajectories of all the targets were obtained after the target extraction and tracking.



Key wordsimaging sonar      target extraction      multi-target tracking      track recognition      target trajectory     
Received: 07 March 2018      Published: 28 March 2019
CLC:  TP 29  
Corresponding Authors: Jun HAN     E-mail: jingdxiang@zju.edu.cn;jhan@zju.edu.cn
Cite this article:

Dan-xiang JING,Jun HAN,Zhi-wei XU,Ying CHEN. Underwater multi-target tracking using imaging sonar. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 753-760.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.016     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/753


基于成像声呐的水下多目标跟踪研究

针对水下多目标跟踪问题,提出基于成像声呐的高效目标跟踪算法. 基于声呐的成像特点,针对声学图像中的每个像素点,建立基于信号强度的回波信号模型,提取图像中的个体目标. 采用基于序贯蒙特卡罗的概率密度假设(SMCPHD)滤波对各目标状态进行滤波,结合Auction航迹识别算法将滤波后的目标状态与已确定的航迹进行关联,实现多目标跟踪. 通过算法的仿真分析发现,该方法相对于基于数据关联型的多目标跟踪算法如联合概率数据关联(JPDA)算法、多假设跟踪(MHT)算法,大大提高了计算效率. 对采集的现场数据进行目标提取与跟踪,获得目标的跟踪轨迹.


关键词: 成像声呐,  目标提取,  多目标跟踪,  航迹识别,  目标轨迹 
Fig.1 Working diagram of DIDSON
Fig.2 Schematic diagram of track recognition algorithm
Fig.3 Flow chart of track recognition algorithm
目标 起始位置/m 初始速度/(m?s?1 出现时间/s 消失时间/s
目标1 (0, 0) (3, ?3) 1 20
目标2 (20, 30) (3, ?3) 15 40
目标3 (30, ?40) (3, 3) 35 50
Tab.1 Motion parameters of targets
Fig.4 Targets tracking along x-axis and y-axis
Fig.5 Results of SMCPHD filtering
Fig.6 Estimation and true value of target number
Fig.7 Wasserstein distance
Fig.8 Chart of three targets after track recognition
Fig.9 Placement schematic illustration of DIDSON
参数 参数值 参数 参数值
发射频率 1.8 MHz 接收增益 20 dB
波束个数 96 声速 1 457 m/s
采样点 512 倾斜角 10°
采样频率 37.3 kHz 帧率 13帧/s
Tab.2 Configuration parameters of DIDSON
Fig.10 Raw image and result of target extraction
坐标参数 t0 t1 t2 t3 t4 t5
ρ1/m 7.71 7.66 7.59 7.48 7.37 7.25
θ1/rad 1.49 1.53 1.57 1.61 1.66 1.70
ρ2/m 7.51 7.44 7.35 7.13 7.05 6.90
θ2/rad 1.51 1.57 1.59 1.61 1.64 1.66
ρ3/m 7.42 7.31 7.23 7.13 7.03 6.83
θ3/rad 1.46 1.49 1.53 1.57 1.60 1.64
ρ4/m 7.36 7.29 7.17 7.03 6.97 6.82
θ4/rad 1.45 1.47 1.51 1.56 1.59 1.63
ρ5/m 6.9 6.82 6.72 6.66 6.55 6.47
θ5/rad 1.48 1.54 1.57 1.62 1.69 1.71
ρ6/m 6.94 6.58 6.51 6.41 6.42 6.38
θ6/rad 1.44 1.49 1.52 1.57 1.64 1.72
ρ7/m 6.33 6.33 6.35 6.41 6.50 6.57
θ7/rad 1.45 1.49 1.53 1.56 1.59 1.62
ρ8/m 6.17 6.17 6.2 6.25 6.34 6.41
θ8/rad 1.44 1.49 1.51 1.55 1.58 1.60
ρ9/m 4.69 4.78 4.84 5.00 5.07 5.17
θ9/rad 1.52 1.54 1.57 1.60 1.62 1.63
ρ10/m 4.39 4.54 4.75 ? ? ?
θ10/rad 1.50 1.52 1.60 ? ? ?
ρ11/m 3.17 3.26 3.38 3.44 3.48 3.61
θ11/rad 1.49 1.51 1.56 1.63 1.66 1.67
Tab.3 All targets’ positions obtained from sonar image
Fig.11 Coordinate system for target
Fig.12 Tracking trajectories shown in two-dimensional plane and three-dimensional space
[1]   HURT?S N, PALOMERAS N, CARRERA A, et al Autonomous detection, following and mapping of an underwater chain using sonar[J]. Ocean Engineering, 2017, 130 (1): 336- 350
[2]   CHO H, YU S Real-time sonar image enhancement for AUV-based acoustic vision[J]. Ocean Engineering, 2015, 104 (8): 568- 579
[3]   CHO H, GU J, JOE H, et al Acoustic beam profile-based rapid underwater object detection for an imaging sonar[J]. Journal of Marine Science and Technology, 2015, 20 (1): 180- 197
doi: 10.1007/s00773-014-0294-x
[4]   JING D X, HAN J, WAND X D, et al A method to estimate the abundance of fish based on dual-frequency identification sonar (DIDSON) imaging[J]. Fisheries Science, 2017, 83 (5): 685- 697
doi: 10.1007/s12562-017-1111-3
[5]   HANDEGARD N, WILLIAMS K Automated tracking of fish in trawls using the DIDSON (dual frequency identification SONar)[J]. ICES Journal of Marine Science, 2008, 65 (4): 636- 644
doi: 10.1093/icesjms/fsn029
[6]   HAN J, HONDA H, ASADA A Automated acoustic method for counting and sizing farmed fish during transfer using DIDSON[J]. Fisheries Science, 2009, 75 (1): 1359- 1367
[7]   SHAHRESTANI S, BI H, LYUBCHICH V, et al Detecting a nearshore fish parade using the adaptive resolution imaging sonar (ARIS): an automated procedure for data analysis[J]. Fisheries Research, 2017, 191 (1): 190- 199
[8]   HUANG R, HAN J, TONG J. Assessment of fishery resource of a marine ranching based on a DIDSON [C] // Oceans. Taipei: IEEE, 2014: 1–5.
[9]   徐盼麟, 韩军, 童剑锋 基于单摄像机视频的鱼类三维自动跟踪方法初探[J]. 水产学报, 2012, 36 (4): 623- 628
XU Pan-lin, HAN Jun, TONG Jian-feng Preliminary studies on an automated 3D fish tracking method based on a single video camera[J]. Journal of Fisheries of China, 2012, 36 (4): 623- 628
[10]   BELCHER E, MATSUYAMA B, TRIMBLE G. Object identification with acoustic lenses [C] // MTS/IEEE Conference and Exhibition Oceans. Honolulu: IEEE, 2001: 6–11.
[11]   BELCHER E, HANOT W, BURCH J. Dual-frequency identification sonar (DIDSON) [C] // Proceedings of 2002 International Symposium on Underwater Technology. Tokyo: IEEE, 2002: 187–192.
[12]   BAR S Y. Extension of the probabilistic data association filter in multi-target tracking [C] // Proceedings of the 5th Symposium on Nonlinear Estimation. San Diego: IEEE, 1974: 16–21.
[13]   ROECKER J A, PHILLIS G L A class of near optimal JPDA algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30 (2): 504- 510
doi: 10.1109/7.272272
[14]   BLACKMAN S S Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2009, 19 (1): 5- 18
[15]   VO B N, MA W K The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4091- 4104
doi: 10.1109/TSP.2006.881190
[16]   GLOWACZ A DC motor fault analysis with the use of acoustic signals, Coiflet wavelet transform, and K-nearest neighbor classifier[J]. Archives of Acoustics, 2016, 40 (3): 321- 327
[1] Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.
[2] Zhi-peng XI,Zhuo LOU,Xiao-xia LI,Yan SUN,Qiang YANG,Wen-jun YAN. Vision-based localization and navigation for UAV inspection in photovoltaic farms[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 880-888.
[3] REN Yi-fei, LU Zhi-qiang, LIU Xin-yi, ZHANG Meng. Project scheduling problem with hierarchical levels of skills[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 1000-1006.
[4] ZHOU Bing hai, ZHAO Meng. Hybrid heuristic algorithm for integrated scheduling in  flexible Job Shops[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1073-1079.
[5] ZHOU Bing-hai, CHEN Jin-xiang, ZHAO Meng. Performance analysis for continuous flow transporters of Interbay AMHS with priority rules[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 296-302.
[6] ZHAO Li-jie, CHAI Tian-you, YUAN De-cheng, DIAO Xiao-kun. Probabilistic partial least square based extreme learning machine to enhance reliability of operating conditions recognition[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1747-1752.
[7] SUN Yue, ZHAO Zhi-bin, SU Yu-gang, TANG Chun-sen. Nonlinear programming research on contactless power transfer
system parameters
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 353-360.
[8] MENG Qing-long, WANG Yuan. Modelling and control of CFD-based distributed parameter system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1478-1484.
[9] ZHAO Li-jie,TANG Jian,CHAI Tian-you. Soft sensor of mill load based on selective extreme
learning machine ensemble
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2088-2092.
[10] XIA Ming, DONG Ya-bo, LU Dong-ming. Data transmission reliability assurance scheme based on
hop-by-hop adaptive FEC for wireless sensor networks
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 273-279.
[11] SUN Ning, ZHANG Hua-Guang, WANG Zhi-Liang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1288-1291.
[12] WANG Jian-Zhong, JIN Bei, LU Ren-Quan. Modeling and analysis of urban drainage system based on
leakage model
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1382-1386.
[13] SHANG Jian, DIAO Li-Jie, YUE Heng, CHAI Tian-You. Soft sensor for ball mill load based on multisource data
feature fusion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1406-1413.