Please wait a minute...
J4  2012, Vol. 46 Issue (6): 987-994    DOI: 10.3785/j.issn.1008-973X.2012.06.005
    
Locality sensitive discriminant transductive learning
PAN Jun1,2, KONG Fan-sheng1, WANG Rui-qin2
1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
2. College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel approach called locality sensitive discriminant transductive learning (LSD-TL) was developed in order to utilize the underlying geometric structure and the discriminant information to full extent in the process of data classification. Inspired by the basic theories of the locality sensitive discriminant analysis (LSDA), LSD-TL directly incorporates the discriminative information as well as the local geometry of the data space into the regularization framework of transductive learning. LSD-TL constructs the within-class graph and the between-class graph under the guidance of the discriminative information, so that the margins between the data of different classes in each local manifold are maximized. In addition, the analytical solution for the problem was obtained. Experimental results on real world datasets demonstrated that compared with several traditional graph-based semi-supervised algorithms, the new approach improved the classification accuracy.



Published: 24 July 2012
CLC:  TP 181  
Cite this article:

PAN Jun, KONG Fan-sheng, WANG Rui-qin. Locality sensitive discriminant transductive learning. J4, 2012, 46(6): 987-994.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.06.005     OR     http://www.zjujournals.com/eng/Y2012/V46/I6/987


局部敏感判别直推学习机

为了充分挖掘样本内在的几何结构和蕴含的判别信息来指导样本数据分类,提出一种局部敏感的判别直推学习方法.该方法将局部敏感辨析(LSDA)的基本原理引入到直推学习中,在直推学习的正则化框架中同时引入有助于分类的样本局部结构信息和判别信息,在判别信息指导下构建了类内图和类间图来刻画类内紧性和类间散性,从而在每个局部邻域中进一步最大化类间样本的间隔.同时,用数学的形式给出了目标函数的解析表达,在几个典型数据集上的实验结果表明,相较传统的基于图的半监督学习算法,该方法能取得更高的分类效果.

[1] ZHU Xiaojin. Semisupervised learning literature survey[R]. Wisconsin, USA: Department of Computer Sciences, University of Wisconsin, 2008.
[2] YAN Shuicheng, XUDong, ZHANG Benyu, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[3] QIU Xipeng, WU Lide. Face recognition by stepwise nonparametric margin maximum criterion[C]∥ Proceedings of the 10th International Conference on Computer Vision. Beijing: IEEE Computer Society ,2005: 1567-1572.
[4] CAI Deng, HE Xiaofei, ZHOU Kun, et al. Locality sensitive discriminant analysis[C]∥International Joint Conference on Artificial Intelligence. Hyderabad: Morgan Kaufmann Publishers, 2007: 708-713.
[5] 魏莱,王守觉.基于流形距离的半监督判别分析[J].软件学报, 2010, 21(10): 2445-2453.
WEI Lai, WANG Shoujue. Semisupervised discriminant analysis based on manifold distance [J]. Journal of Software, 2010, 21(10): 2445-2453.
[6] 杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展, 2007, 44(7): 1121-1127.
YANG Jian, WANG Jue, ZHONG Ning. Laplacian semisupervised regression on a manifold [J]. Journal of Computer Research and Development, 2007, 44(7): 1121-1127.
[7] 朱凤梅,张道强.张量图像上的半监督降维算法[J].模式识别与人工智能,2009,22(4): 574-580.
ZHU Fengmei, ZHANG Daoqiang. Semisupervised dimensionality reduction algorithm of tensor image [J]. Pattern Recognition and Artificial Intelligence, 2009, 22(4): 574-580.
[8] BELKIN M, NIYOGI P, SINDHWANI V. Manifold Regularization: A geometric framework for learning from labeled and unlabeled examples.[J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.
[9] 皋军,王士同,邓赵红.基于全局和局部保持的半监督支持向量机[J].电子学报, 2010, 38(7): 1626-1633.
GAO Jun, WANG Shihong, DENG Zhaohong. Global and local preserving based semisupervised support vector machine[J]. Acta Electronica Sinica, 2010, 38(7): 1626-1633.
[10] ZHOU D, BOUSQUEN O, LAL T N, et al. Learning with local and global consistency[C]∥ Advances in Neural Information Processing Systems. Cambridge: MIT, 2004: 321-328.
[11] 孔祥南,黎铭,姜远,等.一种针对弱标记的直推式多标记分类方法[J].计算机研究与发展,2010, 47(8): 1392-1399.
KONG Xiangnan, LI Ming, JIANG Yuan, et al. A transductive multilabel classification method for weak labeling[J]. Journal of Computer Research and Development, 2010, 47(8): 1392-1399.
[12] 李明,杨艳屏,占惠融.基于局部聚类与图方法的半监督学习方法[J].自动化学报, 2010, 36(12): 1655-1660.
LI Ming, YANG Yanping, ZHAN Huirong. Semisupervised learning based on graph and local quick shift[J]. Acta Automatica Sinica, 2010, 36(12): 1655-1660.
[13] XUE Hui, CHEN Songcan, YANG Qiang, Discriminatively regularized leastsquares classification [J].Pattern Recognition, 2009,42(1): 93-104.
[14] CHUNG F R K. Spectral graph theory[M]. Fresno, USA: American Mathematical Society, 1997.
[15] CRAMMER K, SINGER Y. On the algorithmic implementation of multiclass kernelbased vector machines [J] The Journal of Machine Learning Research, 2002, 2(3): 265-292.
[16] SCHLKOPH B, HERBRICH R, SMOLA A J, et al. A generalized representer theorem[C]∥ Proceedings of the 14th Annual Conference on Computational Learning Theory. Amsterdam: Springer Press,2001: 416-426.
[17] BLAKE C, MERZ J. UCI repository of machine learning databases[DB/OL]. [2010-06-26]. http:∥archive.ics.uci.edu/ml.
[18] SAMARIA F, HARTER A. Parameterization of a Stochastic Model for Human Face Identification[C]∥ Proc of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA: IEEE, 1994: 138-142.
[19] VANPANIK V. Statistical learning theory[M]. New York: Wiley,1998.

[1] LIN Yi-ning, WEI Wei, DAI Yuan-ming. Semi-supervised Hough Forest tracking method[J]. J4, 2013, 47(6): 977-983.
[2] LI Kan, HUANG Wen-xiong, HUANG Zhong-hua. Multi-sensor detected object classification method based on
support vector machine
[J]. J4, 2013, 47(1): 15-22.
[3] WANG Hong-bo, ZHAO Guang-zhou, QI Dong-lian, LU Da. Fast incremental learning method for one-class support vector machine[J]. J4, 2012, 46(7): 1327-1332.
[4] AI Jie-qing, GAO Ji, PENG Yan-bin, ZHENG Zhi-jun. Negotiation decision model based on transductive
support vector machine
[J]. J4, 2012, 46(6): 967-973.
[5] JIN Zhuo-jun, QIAN Hui, ZHU Miao-liang. Trajectory evaluation method based on intention analysis[J]. J4, 2011, 45(10): 1732-1737.
[6] GU Hong, ZHAO Guang-zhou. Image retrieval and recognition based on generalized
local distance functions
[J]. J4, 2011, 45(4): 596-601.
[7] LUO Jian-hong, CHEN De-zhao. Application of adaptive ensemble algorithm based on
correctness and diversity
[J]. J4, 2011, 45(3): 557-562.
[8] SHANG Xiu-Qin, LEI Jian-Gang, SUN You-Xian. Genetic programming based twoterm prediction model of iron ore burning through point[J]. J4, 2010, 44(7): 1266-1269.
[9] XU Lei, DIAO Guang-Zhou, GU Hong. Preprocess method of pairwise coupling based on multi-spheres[J]. J4, 2010, 44(2): 237-242.