Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 109-120    DOI: 10.3785/j.issn.1008-973X.2024.01.012
    
Carbon dioxide distribution characteristics of highway tunnel operating environment
Xiaobao WEN1(),Xingbo HAN1,*(),Fei YE1,Nianbing DENG2,Haiting YANG2,Xingbing ZHANG1,3,Peiyuan WANG1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. Ningbo Traffic Engineering Management Center, Ningbo 315000, China
3. Sichuan Chengle Expressway Limited Company, Chengdu 610000, China
Download: HTML     PDF(2613KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The basic level of carbon dioxide volume fraction in the operating environment of highway tunnels and the relationship between carbon dioxide volume fraction and tunnel traffic flow state, plane alignment and cross-section geometric characteristics were analyzed based on the field measurement of five highway tunnels in Ningbo in order to explore the distribution characteristics of carbon dioxide in the operating environment of highway tunnels. The change of carbon dioxide volume fraction in highway tunnel operation environment with time was analyzed based on 4G remote intelligent continuous monitoring. The specific influence of tunnel length, alignment, traffic flow state and section geometric characteristics on the distribution of carbon dioxide was discussed by numerical simulation. Results showed that the volume fraction of carbon dioxide had obvious linear increasing characteristics along the longitudinal direction of the tunnel. Generally, the volume fraction of carbon dioxide at the exit of the tunnel was the highest, up to 691×10?6~1226×10?6, which was 2~4 times that of the general atmospheric environment level. Ventilation level, cross channel, broadband, line shape and length will increase the slope of linear growth and the degree of influence will decrease in turn under the same traffic volume. The cross-section distribution of carbon dioxide has an obvious diffusion phenomenon and gravity effect. The higher the wall height of the same section is, the lower the volume fraction is. The volume fraction of carbon dioxide on both sides of the straight tunnel is symmetrically distributed. The volume fraction inside the curve tunnel is significantly higher than that on the outside. The broadband has a certain buffer effect and the volume fraction on the broadband side is slightly lower than that on the other side. The cross channel has a certain complementary ventilation effect. The volume fraction of carbon dioxide has obvious time-varying characteristics and periodicity. The daily volume fraction extreme value appears at 8, 12 and 17 o’clock, and the weekly volume fraction extreme value appears at the weekend. The volume fraction change is significantly correlated with the traffic volume.



Key wordshighway tunnel      lining carbonation      carbon dioxide distribution      on-site monitoring     
Received: 22 February 2023      Published: 07 November 2023
CLC:  U 451  
Fund:  国家自然科学基金资助项目(52108360);宁波市公益类科技计划资助项目(2021S191);长安大学中央高校基本科研业务费专项资金资助项目(300102213206)
Corresponding Authors: Xingbo HAN     E-mail: wxbchder@126.com;xingbo.han@chd.edu.cn
Cite this article:

Xiaobao WEN,Xingbo HAN,Fei YE,Nianbing DENG,Haiting YANG,Xingbing ZHANG,Peiyuan WANG. Carbon dioxide distribution characteristics of highway tunnel operating environment. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 109-120.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/109


公路隧道运营环境的二氧化碳分布特性

为了探究公路隧道运营环境中CO2的分布特性,基于宁波市5处公路隧道的现场实测,研究公路隧道运营环境的CO2体积分数基本水平以及CO2体积分数与隧道交通流状态、平面线形、断面几何特性等的关系. 基于4G远程智能化连续监测,分析公路隧道运营环境CO2体积分数随时间的变化. 通过数值模拟探讨隧道长度、线形、交通流状态及断面几何特性等对CO2分布的具体影响规律. 研究发现,CO2体积分数沿隧道纵向具有明显的线性递增特征,通常情况下隧道出口处的CO2体积分数最高,可达691×10?6~1 226 ×10?6,为一般大气环境水平的2~4倍,同交通量情况下通风水平、横通道、加宽带、线形、长度等会提高线性增长的斜率且影响程度依次递减. CO2的断面分布具有明显的扩散现象和重力效应,同一断面的壁面高度越大,体积分数越小,直线隧道两侧的CO2呈对称分布,曲线隧道内侧的体积分数显著高于外侧,加宽带具有一定的缓冲效应且加宽带一侧体积分数略低于另一侧,横通道具有一定的互补式通风效果. CO2体积分数具有明显的时变特征和周期性,8点、12点、17点出现日体积分数极值,周末出现周体积分数极值,体积分数变化与交通量情况显著相关.


关键词: 公路隧道,  衬砌碳化,  二氧化碳分布,  现场监测 
工况 隧道 风机数 隧道长度/m 隧道断面/m 线形 交通流特征
净高 净宽 单向或双向 连续性 测量时间
S1 高架岭隧道 8 1385 11.25 5 直线 单向 连续流 下午
S2 史家山隧道 6 900 10.46 5 直线 单向 断续流 下午
S3 影城隧道 410 13 5 直线 双向 断续流 下午
S4 大金山隧道上行线 10 1950 11 7.05 曲线 单向 连续流 夜晚9点
S5 大金山隧道下行线 10 1950 12.6 7.35 曲线 单向 连续流 凌晨1点
Tab.1 Carbon dioxide monitoring conditions
Fig.1 Carbon dioxide on-site monitoring process
Fig.2 Carbon dioxide distribution of mobile monitoring under different working conditions
名称 y/10?6 名称 y/10?6
巴塞罗那地铁隧道[17] 371~569 某地铁隧道[24] 390
哥本哈根地铁隧道 6000 秦岭铁路隧道[19] 526~1099
某隧道1[25] 979 某隧道2[26] 2000
巴基斯坦Lowari隧道[23] 2000 仰口隧道[22] 700~1600
文昌门-和平门隧道[21] 558~762 金花隧道[21] 529~738
尚新路隧道[21] 463~480 南门隧道[21] 463~508
高架岭隧道 540~691 史家山隧道 536~766
影城隧道 536~691 大金山隧道 379~1226
Tab.2 Measurements of carbon dioxide volume fraction in different tunnels
Fig.3 Daily monitoring data of carbon dioxide
Fig.4 Week monitoring data of carbon dioxide
Fig.5 Model of carbon dioxide emission
隧道断面 薄板
净高 净宽 当量直径 高度 厚度 宽度
8.07 14.62 9.66 0.3 0.1 7.8
Tab.3 Size of tunnel and release source thin plate model m
工况 L/m 线形 单或双向 有无开放横通道
1 400 直线 单向
2 400 直线 双向
3 400 曲线 单向
4 1 000 直线(无加宽带) 单向
5 1 000 直线(有加宽带) 单向
6 1 000 直线(无加宽带) 单向
Tab.4 Numerical simulation working conditions of carbon dioxide spatial distribution in tunnel
车辆类型 m Nm
汽油小汽车 1 2287
柴油小汽车 2 0
客车 3 359
小货车 4 267
中货车 5 48
大货车 6 9
总计 2970
Tab.5 Traffic volume and composition
工况 风压设置
1、3 入口 18.38 Pa
2 入口 2.15 Pa
4、5、6 入口 13.12 Pa,400 m处16.62 Pa
Tab.6 Air level
Fig.6 Vertical overall distribution law of carbon dioxide
Fig.7 Carbon dioxide section distribution of straight tunnel
Fig.8 Carbon dioxide section distribution of curved tunnel
Fig.9 Carbon dioxide section distribution of 1 000 m straight line ( with broadband ) tunnel
Fig.10 Carbon dioxide section distribution of 1 000 m straight line ( with cross channel ) tunnel
[1]   金伟良, 赵羽习 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报: 工学版, 2002, 36 (4): 27- 36
JIN Weiliang, ZHAO Yuxi State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (4): 27- 36
[2]   EKOLU S O A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete [J]. Construction Building Material, 2016, 127 (11): 306- 320
[3]   韩兴博, 叶飞, 梁晓明, 等 公路隧道钢筋混凝土衬砌碳化耐久性区划[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1436- 1443
HAN Xingbo, YE Fei, LIANG Xiaoming, et al Carbonation resistance zonation of reinforced concrete lining of road tunnels[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1436- 1443
[4]   谷慧, 李全旺, 侯冠杰 碳化环境下混凝土结构耐久性模型的更新方法[J]. 工程力学, 2021, 38 (5): 113- 121
GU Hui, LI Quanwang, HOU Guanjie Updating method for durability models of concrete structures in carbonation environment[J]. Engineering Mechanics, 2021, 38 (5): 113- 121
[5]   巴明芳, 薛涛, 黄国阳, 等 公路隧道低水胶比衬砌混凝土碳化耐久性预测与分析[J]. 公路交通科技, 2018, 35 (9): 56- 62
BA Mingfang, XUE Tao, HUANG Guoyang, et al Prediction and analysis of carbonation durability of lining concrete with low watercement ratio for vehicle tunnels[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (9): 56- 62
[6]   翁其能, 张丽珺, 秦伟 公路隧道环境因子对混凝土衬砌耐久性影响综述[J]. 材料导报, 2014, 28 (15): 93- 97
WENG Qineng, ZHANG Lijun, QIN Wei Effect of highway tunnel environment factors on durability of lining concrete[J]. Materials Reports, 2014, 28 (15): 93- 97
[7]   赵铁军, 金祖权, 王命平, 等 胶州湾海底隧道衬砌混凝土的环境条件与耐久性[J]. 岩石力学与工程学报, 2007, 26 (Suppl.2): 3823- 3829
ZHAO Tiejun, JIN Zuquan, WANG Mingping, et al Environmental condition and durability of lining concrete n kiaochow bay subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 3823- 3829
[8]   武海荣, 金伟良, 吕清芳, 等 基于可靠度的混凝土结构耐久性环境区划[J]. 浙江大学学报: 工学版, 2012, 46 (3): 416- 423
WU Hairong, JIN Weiliang, LV Qingfang, et al Reliability-based zonation of environmental area according to its effect on durability of concrete structures[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 416- 423
[9]   卢朝辉, 吴蔚琳, 赵衍刚 混凝土及预应力混凝土结构碳化深度预测模型研究[J]. 铁道科学与工程学报, 2015, 12 (2): 368- 375
LU Zhaohui, WU Weilin, ZHAO Yangang Prediction models for carbonation depth of reinforced and prestressed concrete structures[J]. Journal of Railway Science and Engineering, 2015, 12 (2): 368- 375
[10]   肖佳, 勾成福 混凝土碳化研究综述[J]. 混凝土, 2010, 32 (1): 40- 44
XIAO Jia, GOU Chengfu Overview of the research for concrete carbonation[J]. Concrete, 2010, 32 (1): 40- 44
[11]   彭凌风, 蔺鹏臻 荷载作用下混凝土试件碳化性能研究[J]. 混凝土, 2017, 39 (3): 53- 55
PENG Lingfeng, LIN Pengzhen Performance study carbonization of concrete specimen under load[J]. Concrete, 2017, 39 (3): 53- 55
[12]   韩兴博, 叶飞, 王永东, 等 劣化可靠度下的隧道衬砌结构预防性养护决策[J]. 中国公路学报, 2021, 34 (1): 104- 115
HAN Xingbo, YE Fei, WANG Yongdong, et al Predictive maintenance decision-making of tunnel lining structure based on deterioration reliability[J]. China Journal of Highway and Transport, 2021, 34 (1): 104- 115
[13]   韩兴博, 叶飞, 夏天晗, 等 在役隧道环境侵蚀下管片承载能力概率劣化模型[J]. 中国公路学报, 2022, 35 (1): 49- 58
HAN Xingbo, YE Fei, XIA Tianhan, et al Probability degradation models of bearing capacity of operating tunnel segments under environmental erosions[J]. China Journal of Highway and Transport, 2022, 35 (1): 49- 58
[14]   曾石发, 田源, 唐莎, 等 城市慢行隧道运营通风控制标准研究[J]. 公路交通科技, 2019, 36 (12): 104- 109
ZENG Shifa, TIAN Yuan, TANG Sha, et al Study on urban pedestrian tunnel operation ventilation control standards[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (12): 104- 109
[15]   王蕾. 基于环境因素的公路隧道衬砌结构碳化耐久性研究 [D]. 西安: 长安大学, 2020.
WANG Lei. Research on carbonation durability of highway tunnel lining structures based on environmental factors [D]. Xi’an: Chang’an University, 2020.
[16]   苏培东, 曹津铭, 舒鸿燚, 等 构造复杂区非煤地层隧道有害气体成因机制及运移模式[J]. 中国铁道科学, 2020, 41 (2): 91- 98
SU Peidong, CAO Jinming, SHU Hongyi, et al Genetic mechanism and migration mode of harmful gases in non-coal strata tunnel through tectonic complex area[J]. China Railway Science, 2020, 41 (2): 91- 98
[17]   MORENO T, PEREZ N, RECHE C, et al Subway platform air quality: assessing the influences of tunnel ventilation, train piston effect and station design[J]. Atmospheric Environment, 2014, 92 (8): 461- 468
[18]   KAPPELT N, RUSSELL H S, FESSA D, et al Particulate air pollution in the Copenhagen metro part 1: mass concentrations and ventilation[J]. Environment International, 2023, 171: 1- 10
[19]   李兵成, 陈文丽, 陈世桂, 等 秦岭隧道空气质量对相关人群及环境影响的调查[J]. 铁道劳动安全卫生与环保, 2008, 35 (4): 168- 170
LI Bingcheng, CHEN Wenli, CHEN Shigui, et al Investigation on the influence of air quality in Qinling tunnel on related population and environment[J]. Railway Energy Saving and Environmental Protection and Occupational Safety and Health, 2008, 35 (4): 168- 170
[20]   SOEDER D J Greenhouse gas sources and mitigation strategies from a geosciences perspective[J]. Advances in GeoEnergy Research, 2021, 5 (3): 274- 285
doi: 10.46690/ager.2021.03.04
[21]   刘洋. 西安城市公路隧道空气污染物浓度分布及通风方式研究 [D]. 西安: 西安工程大学, 2018.
LIU Yang. Research on air pollutant concentration distribution andventilation mode in Xi'an urban highway tunnel [D]. Xi’an: Xi’an Polytechnic University, 2018.
[22]   CONG X C, QU J H, YANG G S On-road measurements of pollutant concentration profiles inside Yangkou Tunnel, Qingdao, China[J]. Environmental Geochemistry and Health, 2017, 39 (5): 1179- 1190
doi: 10.1007/s10653-016-9885-2
[23]   KHAN J, AHMED W, YASIR M, et al Pollutants concentration during the construction and operation stages of a long tunnel: a case study of Lowari Tunnel, (Dir-Chitral), Khyber Pakhtunkhwa, Pakistan[J]. Applied Sciences-Basel, 2022, 12 (12): 1- 10
[24]   DE FRÉ R, BRUYNSERAEDE P, KRETZSCHMAR J G Air pollution measurements in traffic tunnels[J]. Environmental Health Perspectives, 1994, 102 (Suppl.4): 31- 37
[25]   PARROTT L J. A review of carbonation in reinforced concrete [M]. Slough: Cement and Concrete Association, 1987.
[26]   许超, 农兴中, 范进, 等 基于Monte-Carlo的地铁混凝土碳化环境区划研究[J]. 南京理工大学学报, 2020, 44 (1): 1- 6
XU Chao, NONG Xingzhong, FAN Jin, et al Carbonization environment zonation of subway concrete based on Monte-Carlo method[J]. Journal of Nanjing University of Science and Technology, 2020, 44 (1): 1- 6
[27]   张少君. 中国典型城市机动车排放特征与控制策略研究 [D]. 北京: 清华大学, 2014.
ZHANG Shaojun. Characteristics and control strategies of vehicle emissions in typical cities of China [D]. Beijing: Tsinghua University, 2014.
[1] Zhen WANG,Zhi DING,Xiao ZHANG,Qi-hui ZHOU,Cheng-quan ZHANG. Ultimate bearing capacity of shield segment structures considering ovality imperfection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2290-2302.
[2] Xing-bo HAN,Fei YE,Xiao-ming LIANG,Hao-lan FENG,Lei WANG,Yong-xu XIA. Carbonation resistance zonation of reinforced concrete lining of road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1436-1443.
[3] Hui JIN,Da-jun YUAN,Da-long JIN. Effect of shield excavation on shield shell-soil contact stress[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1036-1047.
[4] Wei-ming HUANG,Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU. Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 787-795.
[5] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[6] Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.
[7] TONG Lei, XIE Kang-He, LEI Meng-Meng, WANG Kun. Elastic complex variables solution for general arbitrary ground
deformation of tunnels in clays
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1825-1830.
[8] SHU Jiong-Ai, ZHANG Yi-Ping. Time-dependent parameter model for settlement prediction considering parameter convergence[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 2125-2128.