Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1833-1844    DOI: 10.3785/j.issn.1008-973X.2022.09.017
    
Dynamic characteristics of pinion and rack stroke-increment mechanism with grease lubrication
Zhi-qun CHEN1(),Lin-fang QIAN1,2,*(),Yi-cheng ZHU1
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China
Download: HTML     PDF(2822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to accurately obtain the dynamic characteristics of the pinion and rack under grease lubrication condition, a structure-grease film coupling meshing stiffness model was presented, which took both the structural time-varying meshing stiffness and transient thermal elastohydrodynamic lubrication stiffness during the meshing process of the rack and pinion into account, the dynamics equations of the pinion and rack stroke-increment mechanism involving the friction were formulated. The dynamic characteristics of pinion and rack mechanism and grease film were analyzed, the numerical results showed that total meshing stiffness between gear teeth was lower than the time-varying meshing stiffness of structure when the transient thermal elastohydrodynamic effect of grease was considered. With the decreasing of the normal meshing force, the total stiffness also reduced. Generally speaking, with the increase of the equivalent radius of curvature, the center film thickness became more thicker and the center pressure decreased. Both of them showed high frequency fluctuation characteristics. The worst lubrication state occurred on the gear tooth flank near the base circle where the temperature rise and pressure of the grease film were the highest, thickness were the thinnest. The friction coefficient was lower in the middle period with higher rack and pinion drive velocity than that in start and end periods, and it decreased obviously when the meshing point was close to pitch point.



Key wordspinion and rack mechanism      grease lubrication      mesh stiffness      thermal elastohydrodynamic lubrication      oil film characteristics      friction     
Received: 22 September 2021      Published: 28 September 2022
CLC:  TH 132.4  
Fund:  国家自然科学基金资助项目(11472137)
Corresponding Authors: Lin-fang QIAN     E-mail: zqchen_njust@163.com;lfqian@njust.edu.cn
Cite this article:

Zhi-qun CHEN,Lin-fang QIAN,Yi-cheng ZHU. Dynamic characteristics of pinion and rack stroke-increment mechanism with grease lubrication. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1833-1844.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1833


脂润滑齿轮齿条增程机构的动态特性

为了准确地获得脂润滑条件下齿轮齿条的动态特性,考虑齿轮齿条啮合时的结构时变啮合刚度和瞬态热弹流润滑刚度的耦合影响,建立结构?脂膜耦合啮合刚度模型,推导受摩擦影响的齿轮齿条增程机构的动力学方程. 分析齿轮齿条机构及脂膜的动态特性,数值结果表明:在考虑润滑脂的瞬态热弹流效应后,轮齿的啮合总刚度比结构时变啮合刚度低;且法向啮合力越小,总刚度值越低. 中心膜厚、中心压应力均具有高频波动特性,并随着当量曲率半径的增加分别呈上升与下降的趋势. 最恶劣润滑状态出现在齿轮轮齿面上靠近基圆的位置,此处的脂膜温升最高,脂膜压应力最大,脂膜厚度最薄. 摩擦系数在齿轮齿条传动速度较大的中间时段比起始与末端时段的低,在啮合点靠近节点位置时明显下降.


关键词: 齿轮齿条机构,  脂润滑,  啮合刚度,  热弹流润滑,  油膜特性,  摩擦 
Fig.1 Configuration of pinion and rack stroke-increment mechanism
Fig.2 Mesh stiffness coupling model of structure-grease
参数 数值 参数 数值 参数 数值
$ L_1^{{\rm{p}}} $ 3.922 6 $ Q_3^{{\rm{p}}} $ 0.409 5 $ T_2^{{\rm{r}}} $ ?0.285 7
$M_1^{{\rm{p}}}$ 1.625 4 $ R_3^{{\rm{p}}} $ 0.330 8 $ U_2^{{\rm{r}}} $ 0.104 0
$ P_1^{{\rm{p}}} $ 2.697 9 $ S_3^{{\rm{p}}} $ 0.236 8 $ V_2^{{\rm{r}}} $ 0.577 7
$ Q_1^{{\rm{p}}} $ 0.434 7 $ T_3^{{\rm{p}}} $ 0.085 1 $ QH_2^{{\rm{r}}} $ 0.104 0
$ L_2^{{\rm{p}}} $ ?0.511 4 $ U_3^{{\rm{p}}} $ ?0.080 4 $ MH_2^{{\rm{r}}} $ 0.577 7
$ M_2^{{\rm{p}}} $ 0.339 7 $ V_3^{{\rm{p}}} $ 1.685 9 $ L_3^{{\rm{r}}} $ 1.440 4
$ P_2^{{\rm{p}}} $ 0.330 8 $ L_1^{{\rm{r}}} $ ?1.248 0 $ M_3^{{\rm{r}}} $ 0.095 2
$ Q_2^{{\rm{p}}} $ 0.330 8 $ M_1^{{\rm{r}}} $ ?0.071 4 $ Q_3^{{\rm{r}}} $ ?0.096 7
$ R_2^{{\rm{p}}} $ 0.330 8 $ P_1^{{\rm{r}}} $ 0.322 6 $ S_3^{{\rm{r}}} $ ?0.118 2
$ S_2^{{\rm{p}}} $ 0.236 8 $ Q_1^{{\rm{r}}} $ 2.007 9 $ T_3^{{\rm{r}}} $ 0.285 7
$ T_2^{{\rm{p}}} $ ?0.085 1 $ LH_1^{\rm{r}} $ 0.357 1 $ U_3^{{\rm{r}}} $ ?0.104 0
$ U_2^{{\rm{p}}} $ 0.080 4 $ MH_1^{{\rm{r}}} $ 2.007 9 $ V_3^{{\rm{r}}} $ 0.577 7
$ V_2^{{\rm{p}}} $ 1.685 9 $ L_2^{{\rm{r}}} $ 1.440 4 $ QH_3^{{\rm{r}}} $ ?0.104 0
$ L_3^{{\rm{p}}} $ ?0.511 4 $ M_2^{{\rm{r}}} $ ?0.095 2 $ MH_3^{{\rm{r}}} $ 0.577 7
$ M_3^{{\rm{p}}} $ ?0.399 7 $ Q_2^{{\rm{r}}} $ 0.096 7
$ P_3^{{\rm{p}}} $ 0.330 8 $ S_2^{{\rm{r}}} $ ?0.118 2
Tab.1 Constant coefficient terms of structural coupling stiffness
Fig.3 Deformation compatibility condition considering coupling phenomenon
Fig.4 Schematic diagram of grease lubrication thermal elastohydrodynamic film at meshing point
参数 数值 参数 数值
齿轮质量 ${m_{{\rm{p}}} }/{{\rm{kg}}}$ 4.91 齿宽 $b/{{\rm{mm}}}$ 20
齿轮转动惯量 ${I}_{\mathrm{p} }/(\rm{kg} \cdot {{\rm{m}}}^{2})$ 4.2×10?4 弹性模量 $ E/{\text{GPa}} $ 207
上侧齿条质量 ${m_{{\rm{r}}} }/{ {\rm{kg} } }$ 12.91 泊松比 $\; \mu $ 0.3
模数 ${\rm{ m}}/{{\rm{mm}}}$ 3 齿侧间隙 $2\bar D/{{\rm{mm}}}$ 0.10
齿轮齿数 $ z $ 20
Tab.2 Structural parameters of pinion and rack
名称 c/
(J·kg·K?1)
k/
(W·m?1·K?1)
ρ/
(kg·m?3)
ρT/
(m·k?1)
φ0/
(Pa·sn)
n
齿轮 470 46 7850
齿条 470 46 7850
润滑脂 1646 0.14 880 0.00065 8.634 0.754
Tab.3 Rheological parameters of grease with temperature of 303 K and thermodynamic parameters of rack and pinion drive systems
Fig.5 Flowchart of solving dynamic model of pinion and rack with grease lubrication
Fig.6 Displacement curve and velocity curve of upper rack
Fig.7 Meshing state characteristics during second tooth meshing cycle of gear and upper rack
Fig.8 Meshing state characteristics during eighth tooth meshing cycle of gear and upper rack
Fig.9 Total friction coefficient of upper rack
Fig.10 Variation of friction coefficient during second tooth meshing process
Fig.11 Finite element model of engagement of tooth and pinion engagement
Fig.12 Comparison of meshing stiffness of second tooth
[1]   石建飞, 苟向锋, 朱凌云 计及摩擦的多状态啮合渐开线直齿轮系统动力学建模分析[J]. 西北工业大学学报, 2020, 38 (2): 401- 411
SHI Jian-fei, GOU Xiang-feng, ZHU Ling-yun Dynamic modeling and analysis of involute spur gear transmission system considering friction and multi–state meshing conditions[J]. Journal of Northwestern Polytechnical University, 2020, 38 (2): 401- 411
doi: 10.3969/j.issn.1000-2758.2020.02.022
[2]   KAHRAMAN A, SINGH R Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibrations, 1990, 142 (1): 49- 75
doi: 10.1016/0022-460X(90)90582-K
[3]   KAHRAMAN A, BLANKENSHIP G W Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64 (1): 217- 226
doi: 10.1115/1.2787276
[4]   BARTELMUS W Mathematical modelling and computer simulations as an aid to gearbox diagnostics[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 855- 871
doi: 10.1006/mssp.2001.1411
[5]   ZHU L Y, SHI J F, GOU X F Modeling and dynamics analyzing of a torsional-bending-pendular face-gear drive system considering multi-state engagements[J]. Mechanism and Machine Theory, 2020, 149: 103790
doi: 10.1016/j.mechmachtheory.2020.103790
[6]   XIE C Y, SHU X D A new mesh stiffness model for modified spur gears with coupling tooth and body flexibility effects[J]. Applied Mathematical Modelling, 2020, 91: 1194- 1210
[7]   BARBIERI M, LUBRECHT A A, PELLICANO F Behavior of lubricant fluid film in gears under dynamic conditions[J]. Tribology International, 2013, 62: 37- 48
doi: 10.1016/j.triboint.2013.01.017
[8]   黄立, 胡元中, 王文中 斜齿轮非稳态等温弹流润滑数值分析[J]. 润滑与密封, 2009, 34 (7): 23- 27
HUANG Li, HU Yuan-zhong, WANG Wen-zhong Numerical analysis of transient elastohydrodynamic lubrication of helical gears[J]. Lubrication Engineering, 2009, 34 (7): 23- 27
doi: 10.3969/j.issn.0254-0150.2009.07.006
[9]   DE LA CRUZ M, CHONG W W F, TEODORESCU M, et al Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions[J]. Tribology International, 2012, 49: 17- 29
doi: 10.1016/j.triboint.2011.12.006
[10]   菅光霄, 王优强, 于晓, 等 振动与接触冲击耦合作用下的齿轮弹流润滑研究[J]. 振动与冲击, 2020, 39 (21): 226- 232
JIAN Guang-xiao, WANG You-qiang, YU Xiao, et al Elasto-hydrodynamic lubrication of gears under coupling of vibration and contact impact[J]. Journal of vibration and shock, 2020, 39 (21): 226- 232
doi: 10.13465/j.cnki.jvs.2020.21.030
[11]   TAO J, WEN A, LIU Z, et al Lean lubrication of ultra large modulus open gear and rack pair: a case study of the gear-rack drive mechanism of the Chinese "Three Gorge Dam" ship lift[J]. Journal of Cleaner Production, 2021, 282: 124450
doi: 10.1016/j.jclepro.2020.124450
[12]   温诗铸, 杨沛然. 弹性流体动力润滑 [M]. 北京: 清华大学出版社, 1992: 262-269.
[13]   XIE C Y, LIN H, HAN X H, et al Analytical formulas for gear body-induced tooth deflections of spur gears considering structure coupling effect[J]. International Journal of Mechanical Sciences, 2018, 148: 174- 190
doi: 10.1016/j.ijmecsci.2018.08.022
[14]   YU W N, MECHEFSKE C K Analytical modeling of spur gear corner contact effects[J]. Mechanism and Machine Theory, 2016, 96: 146- 164
doi: 10.1016/j.mechmachtheory.2015.10.001
[15]   MUNRO R G, MORRISH L, PALMER D Gear transmission error outside the normal path of contact due to corner and top contact[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213 (4): 389- 400
doi: 10.1243/0954406991522347
[16]   TSE D K, LIN H H. Separation distance and static transmission error of involute spur gears [C]// AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit. Nashville: [s.n.], 1992: 3490.
[17]   YOO J G, KIM K W Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel-Bulkley model[J]. Tribology International, 1997, 30 (6): 401- 408
doi: 10.1016/S0301-679X(96)00069-2
[18]   吴正海, 徐颖强, 刘楷安, 等 圆锥滚子轴承滚子/滚道副的脂润滑热成膜性能[J]. 浙江大学学报:工学版, 2020, 54 (3): 459- 466
WU Zheng-hai, XU Ying-qiang, LIU Kai-an, et al Thermal film-forming ability of grease lubrication at roller-raceway pair in tapered roller bearings[J]. Journal of Zhejiang University:Engineering Science, 2020, 54 (3): 459- 466
[19]   KAUZLARICH J J, GREENWOOD J A Elastohydrodynamic lubrication with Herschel-Bulkley model greases[J]. Tribology Transactions, 1972, 15 (4): 269- 277
[20]   GU C X, MENG X H, XIE Y B, et al Effects of surface texturing on ring/liner friction under starved lubrication[J]. Tribology International, 2016, 94: 591- 605
doi: 10.1016/j.triboint.2015.10.024
[21]   WANG S, ZHU R An improved mesh stiffness model for double-helical gear pair with spalling defects considering time-varying friction coefficient under mixed EHL[J]. Engineering Failure Analysis, 2021, 121: 105174
doi: 10.1016/j.engfailanal.2020.105174
[22]   GREENWOOD J A, TRIPP J H The Contact of Two Nominally Flat Rough Surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185 (1): 625- 634
doi: 10.1243/PIME_PROC_1970_185_069_02
[1] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[2] Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
[3] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[4] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[5] Wei CAO,Wei PU,Yi-pin WAN,Di WANG,Cun-bo LIU. Simplified calculation method for friction coefficient in point contact with arbitrary entrainment vector[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2307-2314.
[6] Jian-ming XU,Zhi-peng ZHAO,Jian-wei DONG. Free-force control of flexible robot joint system without sensors on link side[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1256-1263.
[7] Zheng–hai WU,Ying–qiang XU,Kai–an LIU,Xing ZHAO. Thermal film-forming ability of grease lubrication at roller-raceway pair in tapered roller bearings[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 459-466.
[8] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[9] Sheng-ping FU,Sheng-bo LI,Ning LUO,Polyakov Roman Nikolaevich. Metamorphic mechanism of wet shift clutch ingear shifting process[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 628-637.
[10] Zhi-jing LI,Jing-hua YE,Hai-bin WU. Robot collision detection with convolution torque observer and friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 427-434.
[11] Zhong-wei QIN,Jie CHEN,Rong-jing HONG,Wei-wei WU. Visual salience detection algorithm for surface defects of friction sheets[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1883-1891.
[12] WANG Zhe, WU Li-cheng. Triaxial test study of reactive powder concrete with different sizes under different friction reducing conditions[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 40-50.
[13] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[14] WANG Fei-fei, XU Ying-qiang, LIU Kai-an. Probability analysis method of tangential contact stiffness on rough surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 255-260.
[15] ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 317-324.