Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 628-637    DOI: 10.3785/j.issn.1008-973X.2019.04.003
    
Metamorphic mechanism of wet shift clutch ingear shifting process
Sheng-ping FU1(),Sheng-bo LI1,Ning LUO1,Polyakov Roman Nikolaevich2
1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
2. Orel State University Named after I.S. Turgenev, Orel State 302026, Russia
Download: HTML     PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

It is difficult to comprehensively describe the work process of wet shift clutch, which is of variable topology, non-constant and nonnumeric. Each configuration constraint function of friction dual discs was defined based on the characteristics analysis of wet shift clutch work process in order to solve the problem. The cell-variator of friction dual discs was constructed. A graph description method was proposed to demonstrate the metamorphic process of wet shift clutch. The matrix analysis method was adopted to deduce the adjacent matrix of each work configuration. The matrix element was the constraint function of friction dual discs. The corresponding metamorphic functions and metamorphic matrixes of adjacent configurations transformation were resolved. The metamorphic topology model of the clutch work process was constructed. The metamorphic mechanics of clutch work process was revealed. A more convenient and direct method of dynamics modeling method was proposed aiming at wet shift clutch based on metamorphic mechanics analysis. The test and simulation results of clutch speed variation curves were comparatively discussed. The accuracy and feasibility of the modeling method were verified.



Key wordswet shift clutch      metamorphic mechanism      constraint function      friction dual discs      metamorphic equation     
Received: 22 March 2018      Published: 28 March 2019
CLC:  U 463  
  TH 132  
Cite this article:

Sheng-ping FU,Sheng-bo LI,Ning LUO,Polyakov Roman Nikolaevich. Metamorphic mechanism of wet shift clutch ingear shifting process. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 628-637.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.003     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/628


换挡工况下湿式换挡离合器变胞机理

针对目前难以全面描述湿式换挡离合器变结构、非定常和非数值的变拓扑工作过程的问题,基于湿式换挡离合器工作特性的分析,定义摩擦对偶片各构态的约束函数,建立摩擦对偶片变胞器,提出湿式换挡离合器变胞的图形描述方法. 采用矩阵分析法,以约束函数为元素,推导离合器各构态的邻接矩阵,解析相邻构态转换时对应的变胞函数和变胞方程,构建湿式换挡离合器工作的变胞拓扑模型,揭示换挡离合器工作状态转换的变胞机理. 基于变胞机理分析,提出更直观和简便的离合器动力学建模方法,通过对比分析离合器转速变化规律的试验和仿真结果,表明该方法的准确性和可行性.


关键词: 湿式换挡离合器,  变胞机理,  约束函数,  摩擦对偶片,  变胞方程 
Fig.1 Wet shifting clutch
Fig.2 Working state of coupling friction disc under separation state
Fig.3 Metamorphic cell-variator of friction dual discs
Fig.4 Metamorphic cell-variator of wet shifting clutch
构态 运动副约束函数 运动链邻接矩阵/变胞方程 变胞矩阵/变胞函数
分离 ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} = \left[ {0, 1, 1, 0, 1, 1} \right]$ ${\bm{B}}_{^{k + 1}}^{\rm{f}} = {\left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{1, 2}}}&0&{...}&{}&0 \\ {{{\bm{C}}_{2, 1}}}&{}&{...}&{}&{}&0 \\ 0&{...}&{}&{{{\bm{C}}_{i, i + 1}}}&{}&{...} \\ {...}&{}&{{{\bm{C}}_{i + 1, i}}}&{...}&{...}&{} \\ {}&{}&{}&{...}&{}&{{{\bm{C}}_{k, k + 1}}} \\ 0&0&{...}&{}&{{{\bm{C}}_{k + 1, k}}}&0 \end{array}} \right]_{(k + 1) \times (k + 1)}}$ ?
滑摩 ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} = \left[ {1, 1, 1, \bar w, 1, 1} \right]$ ${\bm{B}}_{^{k + 1}}^{\rm{h}} = {\left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{1, 2}}}&0&{...}&{}&0 \\ {{{\bm{C}}_{2, 1}}}&{}&{...}&{}&{}&0 \\ 0&{...}&{}&{{{\bm{C}}_{i, i + 1}}}&{}&{...} \\ {...}&{}&{{{\bm{C}}_{i + 1, i}}}&{...}&{...}&{} \\ {}&{}&{}&{...}&{}&{{{\bm{C}}_{k, k + 1}}} \\ 0&0&{...}&{}&{{{\bm{C}}_{k + 1, k}}}&0 \end{array}} \right]_{(k + 1) \times (k + 1)}}$ ?
同步 ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}} = \left[ {1, 1, 1, 1, 1, 1} \right]$ ${\bm{B}}_{^2}^{\rm{t}} = \left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{3t}}} \\ {{{\bm{C}}_{3t}}}&0 \end{array}} \right]$ ?
分离→
滑摩
${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}}$ ${\bm{B}}_{^{k + 1}}^{\rm{h}} = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_m^{{\rm{f}} \to {\rm{h}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{f}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_m^{{\rm{f}} \to {\rm{h}}}} } \right)^{\rm{T}}}$ ${\bm{M}}_{_m}^{{\rm{f}} \to {\rm{h}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{\bf 0}&{}&{} \\ {}&{...}&{}&{}&{}&{} \\ {}&{}&{\alpha _{m + 1}^{{\rm{f}} \to {\rm{h}}}}&{}&{}&{} \\ {}&{}&{}&1&{}&{} \\ {}&{\bf 0}&{}&{}&{...}&{} \\ {}&{}&{}&{}&{}&1 \end{array}} \right]_{\left( {k + 1} \right) \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{f}} \to {\rm{h}}} = \left\{ {\begin{array}{*{20}{l}} 1, &i \ne m + 1;\\ {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} \times {{\bm{A}}^{{\rm{f}} \to {\rm{h}}}}, & i = m + 1.\\ \end{array}} \right. $
滑摩→
同步
${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}}$ ${\bm{B}}_{^2}^{\rm{t}} = \left[ {\begin{array}{*{20}{l}} 0&{{C_{3t}}} \\ {{C_{3t}}}&0 \end{array}} \right] = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{h}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}}} } \right)^{\rm{T}}}$ ${\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{}&{}&{\bf 0}&{} \\ {}&{...}&{}&{}&{}&{}&{} \\ {}&{}&0&{\alpha _{m + 1}^{{\rm{h}} \to {\rm{t}}}}&{}&{}&{} \\ {}&{}&{}&0&1&{}&{} \\ {}&{\bf 0}&{}&{}&{}&{...}&{} \\ {}&{}&{}&{}&{}&{}&1 \end{array}} \right]_{k \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{h}} \to {\rm{t}}} = \left\{ {\begin{array}{*{20}{l}} 1, & i \ne m + 1;\\ {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \times {{\bm{A}}^{{\rm{h}} \to {\rm{t}}}}, & i = m + 1.\\ \end{array}} \right.$
同步→
滑摩
${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}}$ ${\bm{B}}_{^{m + 2}}^{\rm{h}} = ({\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}}){\bm{B}}_{^{m + 1}}^{\rm{t}}{({\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}})^{\rm{T}}}$ $\begin{array}{l}{\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}} = {\left[ {\begin{array}{*{20}{l}}1&{}&{\bf 0}\\{}& \ddots &{}\\{\bf 0}&{}&1\\{}&{\alpha _{m + 2}^{{\rm{t}} \to {\rm{h}}}}&0\end{array}} \right]_{\left( {m + 2} \right) \times \left( {m + 1} \right)}}\\\begin{array}{*{20}{c}}{\alpha _{m + 2}^{{\rm{t}} \to {\rm{h}}} = \left\{ \begin{array}{l}1,\\{\bm{C}}\left( t \right)_{_{i,i + 1}}^{\rm{t}} \times {{\bm{A}}^{{\rm{t}} \to {\rm{h}}}},\end{array} \right.}&\begin{array}{l}i \ne m + 1;\\i = m + 1.\end{array}\end{array}\end{array}$
滑摩→
分离
${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}}$ ${\bm{B}}_{^{k + 1}}^{\rm{f}} = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{h}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}}} } \right)^{\rm{T}}}$ ${\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{}&{}&{} \\ {}&\ddots &{}&{\bf 0}&{}&{} \\ {}&{}&{\alpha _{m + 1}^{{\rm{h}} \to {\rm{f}}}}&{}&{}&{} \\ {}&{}&{}&1&{}&{} \\ {}&{\bf 0}&{}&{}&\ddots &{} \\ {}&{}&{}&{}&{}&1 \end{array}} \right]_{\left( {k + 1} \right) \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{h}} \to {\rm{f}}} = \left\{ {\begin{aligned} &\;\; 1, \quad\quad\quad\quad\quad\;\;\; i \ne m + 1;\\&\;\; {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \times {{\bm{A}}^{{\rm{h}} \to {\rm{f}}}}, i = m + 1.\\ \end{aligned}} \right.$
Tab.1 Metamorphic description of wet shifting clutch each configuration
Fig.5 General dynamics model of friction plate mass point
Fig.6 Comparative speed results of clutch driving and driven part derived by test and simulation
[1]   LIN C, SUN S, JIANG W. Active anti-jerking control of shifting for electric vehicle driveline[J]. Energy Procedia, 2016, 104 (12): 348- 353
[2]   KIM Y K, KIM H W, LEE I S, et al A speed control for the reduction of the shift shocks in electric vehicles with a two-speed AMT[J]. Journal of Power Electronics, 2016, 16 (04): 1355- 1366
doi: 10.6113/JPE.2016.16.4.1355
[3]   XIONG Cen-bo, MA Biao, LI He-yan Experimental study and thermal analysis on the buckling of friction components in multi-disc clutch[J]. Journal of Thermal Stresses, 2015, 38 (11): 1325- 1345
[4]   熊涔博, 马彪, 李和言, 等 多片离合器恒定及稳态热流分配系数计算方法[J]. 华中科技大学学报: 自然科学版, 2017, 45 (03): 35- 39
XIONG Cen-bo, MA Biao, LI He-yan, et al Calculation method of constant and steady-state heat partition coefficient in multi-disc clutch[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2017, 45 (03): 35- 39
[5]   张金乐, 马彪, 张英锋, 等 湿式换挡离合器热特性仿真[J]. 吉林大学学报: 工学版, 2011, 41 (02): 321- 326
ZHANG Jin-le, MA Biao, ZHANG Ying-feng, et al Simulation of thermal characteristics aiming at wet shift clutch[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41 (02): 321- 326
[6]   马彪, 陈飞, 李和言, 等 湿式离合器摩擦副平均温升特性研究[J]. 兵工学报, 2016, 37 (06): 961- 968
MA Biao, CHEN Fei, LI He-yan, et al Research on average temperature rise characteristics of wet clutch[J]. Acta Arnamentarii, 2016, 37 (06): 961- 968
doi: 10.3969/j.issn.1000-1093.2016.06.001
[7]   马彪, 陈飞, 李和言, 等 换挡频次对离合器平均温升影响的研究[J]. 汽车工程, 2017, 39 (05): 535- 542
MA Biao, CHEN Fei, LI He-yan, et al A study on the effects of shifting frequency upon average temperature rise of clutches[J]. Automotive Engineering, 2017, 39 (05): 535- 542
[8]   李明阳, 马彪, 李和言, 等 多片离合器摩擦对偶片屈曲变形的分析与验证[J]. 汽车工程, 2017, 39 (07): 775- 781
LI Ming-yang, MA Biao, LI He-yan, et al Analysis and verification on friction discs buckling in multi-disc clutch[J]. Automotive Engineering, 2017, 39 (07): 775- 781
[9]   王晓燕, 李杰, 张志凯, 等 离合器摩擦副摩滑过程轴向振动特性研究[J]. 振动与冲击, 2017, 36 (04): 81- 87
WANG Xiao-yan, LI Jie, ZHANG Zhi-kai, et al Axial vibration characteristics of friction disks of clutch on sliding[J]. Journal of Vibration and Shock, 2017, 36 (04): 81- 87
[10]   GHOMSHEI M M, ABBASI V Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method[J]. Journal of Mechanical Science and Technology, 2013, 27 (04): 1031- 1039
doi: 10.1007/s12206-013-0211-y
[11]   杨亚联, 张悈, 秦大同 湿式多片离合器热机耦合温度场及应力场分析[J]. 中国机械工程, 2015, 25 (20): 2740- 2781
YANG Ya-lian, ZHANG Jie, QIN Da-tong Research on thermal mechanical coupling temperature field and stress field of multiplate wet clutch steel disc[J]. China Mechanical Engineering, 2015, 25 (20): 2740- 2781
doi: 10.3969/j.issn.1004-132X.2015.20.008
[12]   张家元, 宋志文, 李长庚, 等 基于有限元法的湿式离合器热结构耦合分析[J]. 机械制造, 2015, 24 (05): 4- 8
ZHANG Jia-yuan, SONG Zhi-wen, LI Chang-geng, et al FEM-based coupling analysis of wet clutch thermal structure[J]. Machinery, 2015, 24 (05): 4- 8
doi: 10.3969/j.issn.1000-4998.2015.05.002
[13]   俞建卫, 王礼飞, 施毅, 等 湿式离合器内花键摩擦热负荷分析[J]. 润滑与密封, 2014, 39 (08): 20- 23
YU Jian-wei, WANG Li-fei, SHI Yi, et al Analysis of friction thermal load of internal spline in wet clutch[J]. Lubrication Engineering, 2014, 39 (08): 20- 23
doi: 10.3969/j.issn.0254-0150.2014.08.004
[14]   马彪, 赵家昕, 陈漫, 等 摩擦材料特性对离合器热弹性不稳定性的影响[J]. 机械工程学报, 2014, 50 (08): 111- 118
MA Biao, ZHAO Jia-xin, CHEN Man, et al Effect of friction material properties on thermoelastic instability of clutches[J]. Journal of Mechanical Engineering, 2014, 50 (08): 111- 118
[15]   王德伦, 戴建生 变胞机构及其综合的理论基础[J]. 机械工程学报, 2007, 43 (8): 32- 41
WANG De-lun, DAI Jian-sheng Theoretical foundation of metamorphic mechanism and its synthesis[J]. Chinese Journal of Mechanical Engineering, 2007, 43 (8): 32- 41
doi: 10.3321/j.issn:0577-6686.2007.08.007
[16]   金国光, 杨世明, 李东福, 等 柔性变胞机构动力学建模及仿真研究[J]. 华中科技大学学报: 自然科学版, 2008, 36 (11): 76- 79
JIN Guo-guang, YANG Shi-ming, LI Dong-fu, et al Research on dynamic model and simulation of flexible metamorphic mechanism[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2008, 36 (11): 76- 79
[17]   张忠海, 李端玲, 廖启征 柔性变胞机构的拓扑结构表示及构态变换分析[J]. 北京邮电大学学报, 2010, 33 (3): 75- 79
ZHANG Zhong-hai, LI Duan-ling, LIAO Qi-zheng Presentation of topological structures and analysis of configuration transformations of compliant metamorphic mechanisms[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33 (3): 75- 79
doi: 10.3969/j.issn.1007-5321.2010.03.016
[18]   刘川禾 变拓扑机构结构组成理论[J]. 机械工程学报, 2012, 48 (19): 52- 58
LIU Chuan-he Structure composition theory of variable topology mechanisms[J]. Journal of Mechanical Engineering, 2012, 48 (19): 52- 58
[19]   章颖莹. 车辆高转速传动系统换挡过程非线性动力学研究[D]. 北京: 北京理工大学, 2014: 1–20.
ZHANG Ying-ying. Research on nonlinear dynamics of the high speed transmission system of vehicle during gear shifting [D]. Beijing: Beijing Institute of Technology, 2014: 1–20.
[20]   刘江南. 基于创新技法的机构拓扑结构若干问题研究[D]. 长沙: 湖南大学, 2012.
LIU Jiang-nan. Research on several issues in topology structure of mechanisms with innovative methods [D]. Changsha: Hunan University, 2012.
[1] Xiao-liang ZHANG,Can GENG,Jia-mei NIE,Qiao GAO. Modelling and characteristic test for hydraulic mem-inerter device[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 430-440.
[2] De-hua SHI,Ying-feng CAI,Shao-hua WANG,Long CHEN,Zhen ZHU,Li-xin GAO. Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2271-2279.
[3] Chen-long YANG,Peng-hui WU,Xiao-bo SHANG,Zhao-shuai WANG. Simulation and experimental study of engagement process with groove consideration[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1225-1236.
[4] FU Hong xun, ZHAO You qun, LIN Fen, DU Xian bin, NI Xin wei. Theoretical and experimental analysis on steady-state cornering properties of mechanical elastic wheel[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 344-349.
[5] PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 9-16.
[6] GE Zheng, WANG Wei rui, WANG Jun ding. Control strategy for brake clearance adjustment of electronic mechanical brake[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 138-144.
[7] WANG Jing, CAI Yi xi, BAO Wei wei, LI Hui xia. Experimental study of high power LEDs enhanced cooling performance by ionic wind[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1952-1958.
[8] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1600-1607.
[9] CHENG Zhun,LU Zhi xiong,GONG Jia hui,DIAO Xiu yong. Transfer function of steering system and acquisition method of ideal steering ratio[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1276-1283.
[10] PEI Xiao peng,WANG Guo lin,ZhOU Hai chao,ZhAO Fan. Influence of tread design parameters on tire vibration noise[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 871-878.
[11] MA Hao jun, ZHU Shao peng, YU Xiao li, XU Yin chuan, LIN Ding. Electronic differential control considering rolling movement for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 566-573.
[12] KE Jun,SHI Wen ku,QIAN Chen,LI Guo ming,YUAN Ke. Prediction and matching design method for stiffness of composite leaf spring[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2103-2110.
[13] IU Bin-bin, ZHU Shao-peng, MA Hao-jun, FANG Guang-ming, YING Zhen-you, NING Xiao-bin.
Design on simulation and test platform of electric vehicle’s drive control system Q
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1154-1159.
[14] QIU Bin-bin, ZHU Shao-peng, MA Hao-jun, FANG Guang-ming, YING Zhen-you, NING Xiao-bin.
Design on simulation and test platform of electric vehicle’s drive control system
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 4-5.
[15] TANG Fang, ZHOU Xiao-jun, WEI Yan-ding. Changeable steering ratio feedback method to improve human-vehicle comprehensive performance[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 456-462.