|
|
UAV object tracking algorithm based on response and filter deviation-aware regularization |
Hai-jun WANG( ),Sheng-yan ZHANG,Yu-jie DU |
Key Laboratory of Aviation Information and Control in University of Shandong, Binzhou University, Binzhou 256603, China |
|
|
Abstract A real-time unmanned aerial vehicle (UAV) object tracking algorithm based on the response and filter deviation-aware regularization was proposed, aiming at the problem that targets were easily subject to the huge variation of appearance and various change of viewpoint interference in the UAV sequences. According to the consistency of response and correlation filter difference between video frames, the variation of correlation response and filter difference were modeled. Furthermore, an objective function with constraint scheme was constructed, which can learn variation of object appearance and filter. Meanwhile, an auxiliary variable based on the response and filter deviation-aware regularization was introduced to build an optimization function and alternating direction method of multipliers (ADMM) was used to optimize the solution of the correlation filter and auxiliary variable. To validate the effectiveness of the proposed algorithm, comparison experiments with other 9 algorithms were performed on three UAV tracking benchmarks, including DTB70、UAV123@10 fps and UAVDT, in terms of precision and success rate. Experimental results show that the proposed algorithm has good robustness for occlusion, deformation and view variation and can effectively track the target with an average speed of 39.0 frames of second.
|
Received: 06 August 2021
Published: 28 September 2022
|
|
Fund: 山东省自然科学基金资助项目(ZR2020MF142, ZR2019PF021);滨州学院博士启动基金资助项目(2021Y04);滨州学院重大科研基金资助项目(2019ZD03);滨州学院社会服务基金资助项目(BZXYSFW201805) |
响应和滤波器偏差感知约束的无人机目标跟踪算法
针对无人机视觉跟踪任务中目标外观变化大、视野角度多变问题,提出基于响应和滤波器偏差感知约束的无人机实时目标跟踪算法. 该算法根据视频帧间响应差和滤波器变化的一致性,通过建模前后帧响应差和滤波器的变化,建立基于响应偏差感知和帧间滤波器偏差约束机制的目标函数,学习目标的外观变化和滤波器的帧间变化. 引入辅助变量构建优化函数,采用交替方向乘子法(ADMM)将计算目标问题转化为求相关滤波器和辅助变量的最优解. 采用跟踪准确度和成功率指标,将所提算法与其他9种算法在DTB70、UAV123@10 fps和UAVDT等3个无人机视频数据库上进行对比实验. 实验结果表明,所提算法对遮挡、形变、角度变化等干扰属性均具有良好的鲁棒性,跟踪平均速度达到39.0帧/s,能够有效跟踪无人机目标.
关键词:
无人机 (UAV),
相关滤波,
视觉目标跟踪,
响应偏差感知约束,
滤波器偏差
|
|
[1] |
刘芳, 杨安喆, 吴志威 基于自适应Siamese网络的无人机目标跟踪算法[J]. 航空学报, 2020, 41 (1): 323423 LIU Fang, YANG An-zhe, WU Zhi-wei Adaptive Siamese network based UAV target tracking algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (1): 323423
|
|
|
[2] |
孙锐, 方林凤, 梁启丽, 等 孪生网络框架下融合显著性和干扰在线学习的航拍目标跟踪算法[J]. 电子与信息学报, 2021, 43 (5): 1414- 1423 SUN Rui, FANG Lin-feng, LIANG Qi-li, et al Siamese network combined learning saliency and online leaning interference for aerial object tracking algorithm[J]. Journal of Electronics and Information Technology, 2021, 43 (5): 1414- 1423
doi: 10.11999/JEIT200140
|
|
|
[3] |
赵燕伟, 张健, 周仙明, 等 基于视觉−磁引导的无人机动态跟踪与精准着陆[J]. 浙江大学学报:工学版, 2021, 55 (1): 96- 108 ZHAO Yan-wei, ZHANG Jian, ZHOU Xian-ming, et al Dynamic tracking and precise landing of UAV based on visual magnetic guidance[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 96- 108
|
|
|
[4] |
刘芳, 王洪娟, 黄光伟, 等 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40 (3): 322332 LIU Fang, WANG Hong-juan, HUANG Guang-wei, et al UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (3): 322332
|
|
|
[5] |
FU C H, HE Y J, LIN F L, et al Robust multi-kernelized correlators for UAV tracking with adaptive context analysis and dynamic weighted filters[J]. Neural Computing and Applications, 2020, 32: 12591- 12607
doi: 10.1007/s00521-020-04716-x
|
|
|
[6] |
LI Y M, FU C H, HUANG Z Y, et al Intermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional feature[J]. IEEE Transactions on Multimedia, 2021, 23: 810- 822
doi: 10.1109/TMM.2020.2990064
|
|
|
[7] |
HE Y J, FU C H, LIN F L, et al. Towards robust visual tracking for unmanned aerial vehicle with tri-attentional correlation filters [C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE, 2020: 1575-1582.
|
|
|
[8] |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550.
|
|
|
[9] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
|
|
|
[10] |
GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking [C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 1144-1152.
|
|
|
[11] |
LI F, TIAN C, ZUO W M, et al. Learning spatial-temporal regularized correlation filters for visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (ICCV). Salt Lake City: IEEE, 2018: 4904-4913.
|
|
|
[12] |
DAI K, WANG D, LU H C, et al. Visual tracking via adaptive spatially-regularized correlation filters [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 4665-4674.
|
|
|
[13] |
MA C, HUANG J B, YANG X K, et al Robust visual tracking via hierarchical convolutional features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (11): 2709- 2723
doi: 10.1109/TPAMI.2018.2865311
|
|
|
[14] |
FU C H, YE J J, XU J T, et al Disruptor-aware interval-based response inconsistency for correlation filters in real-time aerial tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (8): 6301- 6313
doi: 10.1109/TGRS.2020.3030265
|
|
|
[15] |
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6931-6939.
|
|
|
[16] |
WANG N, ZHOU W G, TIAN Q, et al. Multi-cue correlation filters for robust visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4844-4853.
|
|
|
[17] |
DANELLJAN M, HÄGER G, KHAN F S, et al. Discriminative scale space tracking [J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575.
|
|
|
[18] |
LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration [C]// Computer Vision: ECCV 2014 Workshops. [S. l.]: Springer, 2015: 254-265.
|
|
|
[19] |
MUELLER M, SMITH N, GHANEM B. Context-aware correlation filter tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1387-1395.
|
|
|
[20] |
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 4310-4318.
|
|
|
[21] |
DANELLJAN M, HÄGER G, KHAN F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 1430-1438.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|