Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 823-832    DOI: 10.3785/j.issn.1008-973X.2022.04.023
    
Experimental research on cold flow field characteristics of turbine blade oblique rib channel
Shuang LIN(),Rong WU*(),Bo WANG,Zi-jie ZHANG,Kun-teng WEI
School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
Download: HTML     PDF(2864KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The experimental models of ribbed channel with different angles were designed in order to analyze the flow field characteristics and heat transfer mechanism of the internal ribbed channel of turbine blade. The statistical average characteristics and unsteady flow field of typical section of the channel were analyzed by flow visualization experiment and particle image velocimetry experiment. Reducing angle can reduce the blocking effect of the rib on the fluid and increase the longitudinal range and strength of the vortex behind the rib when the angle between the spoiler and the flow direction is between 60°~90°. The reflux strength of the first rib increases first and then decreases with the decrease of angle, and the longitudinal impact strength of the second rib increases. The oblique rib structure can improve the peak Reynolds stress of the mainstream fluid and the intercostal fluid, enhance the intensity of intercostal disturbance and improve the heat transfer characteristics of the channel. Reducing angle can improve the amplitude and frequency of velocity oscillation, and improve the heat transfer efficiency of the channel. Reducing angle can increase the energy and energy fluctuation frequency of the fluid flow along the rib, and make the vortex easier to exchange energy with the target surface in the process of backward shedding.



Key wordsturbine blade      rib      particle image velocimetry (PIV)      shedding vortex frequency      proper orthogonal decomposition (POD)     
Received: 27 May 2021      Published: 24 April 2022
CLC:  V 232  
Fund:  国家自然科学基金资助项目(11072206);装备预研教育部联合基金资助项目(6141A02033529)
Corresponding Authors: Rong WU     E-mail: shuanglinxmu@163.com;wur@xmu.edu.cn
Cite this article:

Shuang LIN,Rong WU,Bo WANG,Zi-jie ZHANG,Kun-teng WEI. Experimental research on cold flow field characteristics of turbine blade oblique rib channel. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 823-832.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.023     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/823


涡轮叶片斜肋通道冷态流场特性的实验研究

为了探究涡轮叶片内部肋通道的流场特性与换热机理,设计不同角度的带肋通道实验模型. 采用流动显示实验与粒子图像测速实验,对通道的典型截面流场进行统计平均特性分析与非定常分析. 结果表明,当扰流肋与流向的夹角为60°~90°时,减小夹角能够降低扰流肋对流体的阻挡作用,增大扰流肋后方旋涡的纵向范围与强度. 减小夹角使第1个肋区间的回流强度先增大后减小,第2个肋区间流体的纵向冲击强度增大. 斜肋结构能够提高主流流体与肋间流体的雷诺应力峰值,增强肋间扰动强度,提升通道的换热特性. 减小夹角可以提升流场的速度振荡幅值与振荡频率,提高通道的换热效率. 减小夹角可以增大流体沿肋向流动的能量与能量波动频率,使得旋涡在向后脱落的过程中更易于与靶面进行能量交换.


关键词: 涡轮叶片,  扰流肋,  粒子图像测速(PIV),  脱落涡频率,  本征正交分解(POD) 
Fig.1 Water tunnel and PIV system
Fig.2 Rib model and PIV acquisition area
Fig.3 Flow visualization and PIV experimental camera position
Fig.4 Quality of tracer particles
Fig.5 Changing process of flow field between 90° ribs
Fig.6 Changing process of flow field between 60° ribs
Fig.7 Time averaged flow field in middle section of 60°, 70°, 80° and 90° ribs
Fig.8 Velocity distribution above heat transfer target
Fig.9 Time averaged vorticity in middle section of 60°, 70°, 80° and 90° ribs
Fig.10 Turbulence intensity in middle section of 60°, 70°, 80° and 90° ribs
Fig.11 Position of velocity probe in flow field
Fig.12 Amplitude variation of velocity probe position with frequency
Fig.13 70° rib POD coefficient variation of first two modes
Fig.14 70° rib amplitude variation of first two modes with frequency
Fig.15 90° rib vorticity field corresponding of first four modes
Fig.16 80° rib vorticity field corresponding of first four modes
Fig.17 70° rib vorticity field corresponding of first four modes
Fig.18 60° rib vorticity field corresponding of first four modes
[1]   张浩, 李录平, 唐学智, 等 重型燃气轮机涡轮叶片冷却技术研究进展[J]. 燃气轮机技术, 2017, 30 (2): 1- 7
ZHANG Hao, LI Lu-ping, TANG Xue-zhi, et al Review of heavy-duty gas turbine blade cooling technology[J]. Gas Turbine Technology, 2017, 30 (2): 1- 7
[2]   刘大响, 程荣辉 世界航空动力技术的现状及发展动向[J]. 北京航空航天大学学报, 2002, (5): 490- 496
LIU Da-xiang, CHENG Rong-hui Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, (5): 490- 496
doi: 10.3969/j.issn.1001-5965.2002.05.002
[3]   CASARSA L, ARTS T Experimental investigation of the aerothermal performance of a high blockage rib-roughened cooling channel[J]. Journal of Turbomachinery, 2005, 127 (3): 580- 588
doi: 10.1115/1.1928933
[4]   LI S, GHORBANI Z, XIE G N, et al An experimental and numerical study of flow and heat transfer in ribbed channels with large rib pitch-to-height ratios[J]. Journal of Enhanced Heat Transfer, 2013, 20 (4): 305- 319
doi: 10.1615/JEnhHeatTransf.2014010155
[5]   ALFARAWI S, ABDEL S A, BODALAL A Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs[J]. International Journal of Thermal Sciences, 2017, 100 (118): 123- 138
[6]   MAURER M, VON W J, GRITSCH M. An experimental and numerical study of heat transfer and pressure losses of V-and W-shaped ribs at high Reynolds numbers [C]// Turbo Expo: Power for Land, Sea, and Air. Montreal: ASME, 2007: 219-228.
[7]   HAN J C, PARK J S Developing heat transfer in rectangular channels with rib turbulators[J]. International Journal of Heat and Mass Transfer, 1988, 31 (1): 183- 195
doi: 10.1016/0017-9310(88)90235-9
[8]   CHANDRA P R, HAN J C, LAU S C Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel[J]. Journal of Turbomachinery, 1988, 110 (2): 233- 241
doi: 10.1115/1.3262186
[9]   HAN J C, OU S, PARK J S, et al Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators[J]. International Journal of Heat and Mass Transfer, 1989, 32 (9): 1619- 1630
doi: 10.1016/0017-9310(89)90044-6
[10]   PU J, KE Z Q, WANG J H, et al An experimental investigation on fluid flow characteristics in a real coolant channel of LP turbine blade with PIV technique[J]. Experimental Thermal and Fluid Science, 2013, 45 (2): 43- 53
[11]   YU R B, PU J, WANG P, et al Auxiliary hole influence on internal flow characteristics in bend region of a real investment: casting blade coolant channel[J]. Experimental Thermal and Fluid Science, 2019, 102 (4): 123- 136
[1] Xue-ying BAO,Ya-juan LI,Suo-ting HU,Xin-lin BAN,Lin WANG,Jian-chao XU. Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 558-568.
[2] He-xiang LIN,Lian-peng QIAO,Ye YUAN,Guo-ren WANG. Keyword search algorithm of large graph based on GPU[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 271-279.
[3] Xin-yu XU,Nan HU,Li-wu FAN. Coupled water-vapor-heat transport simulation on in-situ thermal conduction heating remediation of soil[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 144-151.
[4] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[5] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[6] Xue-jiao LIU,Yi-dan YIN,Wei CHEN,Ying-jie XIA,Jia-li XU,Li-dong HAN. Secure data sharing scheme in Internet of Vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 957-965.
[7] Chao REN,Gao-wei YAN,Lan CHENG,Fang WANG. Transition mode identification method based on maximum mean discrepancy for multimode process[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 563-570.
[8] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[9] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[10] Zhu-ye XU,Xiao-qiang ZHAO,Hong-mei JIANG. 3D model fitting method based on point distribution model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2373-2381.
[11] Jia-li TAN,Sheng-en FANG. Safety evaluation of a steel truss using mechanical Bayesian networks[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2170-2177.
[12] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[13] Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.
[14] Xia-sheng SHI,Rong-hao ZHENG,Zhi-yun LIN,Gang-feng YAN. Saddle dynamic based distributed algorithm for economic dispatch problem[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 678-683.
[15] Yi-han LUO,Jie-ren CHENG,Xiang-yan TANG,Ming-wang OU,Tian WANG. Early warning model of DDoS attack situation based on adaptive threshold[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 704-711.