Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1453-1463    DOI: 10.3785/j.issn.1008-973X.2021.08.006
    
Deflection of overlying pipeline induced by shield tunneling considering effect of lateral soil
Guo-hui FENG1(),Chang-jie XU1,2,3,*(),Ming-Wang TEY1,Qi XUE4,Kai-fang YANG1,Ling-xiao Guan2,3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, East China Jiaotong University, Nanchang 330013, China
3. Engineering Research and Development Centre for Underground Technology of Jiangxi Province, Nanchang 330013, China
4. Zhejiang Hanghai Intercity Railway Co. Ltd, Jiaxing 314000, China
Download: HTML     PDF(1548KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Studies on pipeline deformation caused by adjacent tunneling are generally based on Winkler foundation model and Pasternak foundation model, and few studies consider Kerr foundation model or the constraint effects of lateral soils beside pipeline. The pipeline was simplified as Euler-Bernoulli beam on the Kerr foundation model, an semi-analytical solution of vertical deformation of pipeline caused by underlying tunneling can be calculated by using the finite difference method, and another difference solution deformation of pipeline considering lateral soils beside pipeline was deduced. Through comparing with the case study on engineering practical and centrifugal results, it was verified that the Kerr foundation model has more advantages, and the calculated result of Kerr foundation model considering effects of lateral soils beside pipeline was close to the result of measured data. Results of parameter analysis show that, with the increase of volume loss ratio and soil elastic modulus, vertical displacement and moment of the pipeline increases. The vertical displacement and moment of the pipeline decrease with the cross angle between pipeline and tunnel increases.



Key wordstunneling      Kerr foundation model      effect of lateral soil      pipeline displacement      finite difference method     
Received: 11 August 2020      Published: 01 September 2021
CLC:  TU 91  
  TU 92  
Fund:  国家自然科学基金-高铁联合基金资助项目(U1934208);国家杰出青年科学基金资助项目(51725802);浙江省自然科学基金委员会-华东院联合基金资助项目(LHZ19E080001);国家自然科学基金资助项目(51878276)
Corresponding Authors: Chang-jie XU     E-mail: ghfeng@zju.edu.cn;xucj@zju.edu.cn
Cite this article:

Guo-hui FENG,Chang-jie XU,Ming-Wang TEY,Qi XUE,Kai-fang YANG,Ling-xiao Guan. Deflection of overlying pipeline induced by shield tunneling considering effect of lateral soil. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1453-1463.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.006     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1453


侧向土体影响下盾构隧道引起上覆管线变形

目前盾构隧道开挖对邻近管线影响的理论研究一般基于Winkler地基模型和Pasternak地基模型,较少考虑精度更高的Kerr地基模型及管线侧向土体影响对管线变形的约束作用. 将管线简化成Euler-Bernoulli梁搁置在Kerr地基模型上,利用差分法得到盾构隧道引起上覆管线竖向位移半解析解,在此基础上进一步推导考虑管线侧向土体影响的Kerr地基模型差分解. 通过与已有工程案例和离心机数据对比,验证Kerr地基模型相比于其他地基模型的优越性,也验证了考虑管线侧向土体影响的Kerr地基模型计算结果更加符合实测数据. 参数分析表明, 随着隧道开挖地层损失率和土体弹性模量的增大,管线的竖向位移和弯矩均增大;随着管线与隧道夹角的增大,管线的竖向位移和弯矩均减小.


关键词: 盾构开挖,  Kerr地基模型,  侧向土体影响,  管线变形,  有限差分法 
Fig.1 Simplified model for influence of shield tunneling on existing pipeline
Fig.2 Diagram of relative position between tunnel and pipeline
Fig.3 Kerr foundation for pipeline-soil interaction
Fig.4 Interaction between pipeline and lateral soil
Fig.5 Comparison of analytical results of proposed method with finite element results
R/m H/m z/m ε0/% ES/MPa v D/m EI/(kN·m2)
3.0 14.4 8.7 0.84 8.2 0.3 3.0 5.87×107
Tab.1 Case study calculation parameters of Shenzhen subway
Fig.6 Comparison of calculated and measured results of deformation of pipeline
R/m H/m z/m ε0/% ES/MPa v D/m EI/(kN·m2)
2.25 11.25 4.165 2 19.52 0.23 1.19 3.363×106
Tab.2 Centrifuge model test parameters
Fig.7 Comparison of calculated and centrifuge model test results of deformation of pipeline
Fig.8 Pipeline vertical deformation with different volume losses ratios
Fig.9 Pipeline moment in different volume losses ratios
Fig.10 Pipeline vertical deformation in different soil elastic modulus
Fig.11 Pipeline moment in different soil elastic modulus
Fig.12 Pipeline vertical deformation in different cross angles
Fig.13 Pipeline moment in different cross angles
[1]   VORSTER T E B, MAIR R J, SOGA K, et al. Centrifuge modeling of the effect of tunneling on buried pipelines mechanisms observed[C]// Proceedings of the 5th International Symposium TC28 on Geotechnical Aspects of Underground Construction in Soft Ground. Amsterdam: [s.n.], 2013: 327–333.
[2]   何川, 李讯, 江英超, 等 黄土地层盾构隧道施工的掘进试验研究[J]. 岩石力学与工程学报, 2013, 32 (9): 1736- 1743
HE Chuan, LI Xun, JIANG Ying-chao, et al Laboratory test on shield tunneling in loss strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (9): 1736- 1743
doi: 10.3969/j.issn.1000-6915.2013.09.002
[3]   王海涛, 金慧, 贾金青, 等 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 219- 226
WANG Hai-tao, JIN Hui, JIA Jin-qing, et al Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline[J]. Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 219- 226
[4]   王绍君 暗挖隧道施工对平行地下管线性状影响研究[J]. 土木工程学报, 2014, 47 (Suppl.2): 334- 338
WANG Shao-jun Influence of tunneling construction on buried pipelines paralleled with running tunnel[J]. China Civil Engineering Journal, 2014, 47 (Suppl.2): 334- 338
[5]   彭基敏, 张孟喜 盾构法施工引起邻近地下管线位移分析[J]. 工业建筑, 2005, 35 (9): 50- 53
PENG Ji-min, ZHANG Meng-xi Analysis of the displacements of underground pipelines caused by shield construction[J]. Industrial Construction, 2005, 35 (9): 50- 53
doi: 10.3321/j.issn:1000-8993.2005.09.014
[6]   吴 波, 高 波 地铁区间隧道施工对近邻管线影响的三维数值模拟[J]. 岩石力学与工程学报, 2002, 21 (Suppl.2): 2451- 2456
WU Bo, GAO Bo 3D numerical simulation one ffect of tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (Suppl.2): 2451- 2456
[7]   魏 纲, 魏新江, 裘新谷, 等 过街隧道施工对地下影响的三维数值模拟[J]. 岩石力学与工程学报, 2009, 28 (Suppl.1): 2853- 2859
WEI Gang, WEI Xin-jiang, QIU Xin-gu, et al 3D numerical simulation of effect of underground urban street-passage tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.1): 2853- 2859
[8]   LOGANATHAN N, POULOS H G Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (9): 846- 856
doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
[9]   魏 纲, 朱 奎 顶管施工对邻近地下管线的影响预测分析[J]. 岩土力学, 2009, 30 (3): 825- 831
WEI Gang, ZHU Kui Prediction for response of adjacent pipelines induced by pipe jacking construction[J]. Rock and Soil Mechanics, 2009, 30 (3): 825- 831
doi: 10.3969/j.issn.1000-7598.2009.03.045
[10]   刘晓强, 梁发云, 张浩, 等 隧道穿越引起地下管线竖向位移的能量变分分析方法[J]. 岩土力学, 2014, 35 (Suppl.2): 217- 222
LIU Xiao-qiang, LIANG Fa-yun, ZHANG Hao, et al Energy variational solution for settlement of buried pipeline induced by tunneling[J]. Rock and Soil Mechanics, 2014, 35 (Suppl.2): 217- 222
[11]   ATTEWELL  P  B,  YEATES  J,  SELBY  A  R.  Soil  movements induced  by  tunneling  and  their  effects  on  pipelines  and structures [M]. London: Blackie & Son Ltd, 1986.
[12]   张陈蓉, 俞 剑, 黄茂松 隧道开挖对邻近非连续接口地埋管线的影响分析[J]. 岩土工程学报, 2013, 35 (6): 1018- 1026
ZHANG Chen-rong, YU Jian, HUANG Mao-song Responses of adjacent underground jointed pipelines induced by tunneling[J]. Journal of Geotechnical Engineering, 2013, 35 (6): 1018- 1026
[13]   PASTERNAK P L. On a new method of analysis of an elastic foundation by means of two foundation constants[D]. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, 1954.
[14]   ZHANG Z, HUANG M, ZHANG C, et al Time-domain analyses for pile deformation induced by adjacent excavation considering influences of viscoelastic mechanism[J]. Tunnelling and Underground Space Technology, 2019, 85: 392- 405
doi: 10.1016/j.tust.2018.12.020
[15]   张桓, 张子新 盾构隧道开挖引起既有管线的竖向变形[J]. 同济大学学报: 自然科学版, 2013, (8): 58- 64
ZHANG Heng, ZHANG Zi-xin The vertical deformation of the pipeline caused by the shield tunnel excavation[J]. Journal of Tongji University: Natural Science Edition, 2013, (8): 58- 64
[16]   可文海, 管凌霄, 刘东海, 等 盾构隧道下穿管道施工引起的管-土相互作用研究[J]. 岩土力学, 2020, 41 (1): 221- 228
KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, et al Research on upper pipeline-soil interaction induced by shield tunneling[J]. Rock and Soil Mechanics, 2020, 41 (1): 221- 228
[17]   林存刚, 黄茂松 基于Pasternak地基的盾构隧道开挖非连续地下管线的挠曲[J]. 岩土工程学报, 2019, (7): 1200- 1207
LIN Cun-gang, HUANG Mao-song Evaluation method for effect of tunneling on underground jointed pipelines[J]. Journal of Geotechnical Engineering, 2019, (7): 1200- 1207
[18]   何小龙, 杨天鸿, 周云伟, 等 考虑管土分离的基坑开挖引起邻近地下管线位移分析[J]. 土木建筑与环境工程 (中英文), 2019, 41 (6): 9- 16
HE Xiao-long, YANG Tian-hong, ZHOU Yun-wei, et al Analysis of pipeline displacement induced by adjoining foundation pit excavation considering pipeline-soil separation[J]. Civil Construction and Environmental Engineering, 2019, 41 (6): 9- 16
[19]   KERR A D A study of a new foundation model[J]. Acta Mechanica, 1965, 1 (2): 135- 147
doi: 10.1007/BF01174308
[20]   ZHANG Zhi-guo, ZHANG Cheng-ping, JIANG Yun-juan, et al Analytical solution for tunnel-soil-pile interaction mechanics based on Kerr foundation model[J]. KSCE Journal of Civil Engineering, 2019, 23 (6): 2756- 2771
doi: 10.1007/s12205-019-0791-x
[21]   宗翔 基坑开挖卸载引起下卧已建隧道的纵向变形研究[J]. 岩土力学, 2016, (Suppl.2): 571- 577
ZONG Xiang Study of longitudinal deformation of existing tunnel due to above excavation unloading[J]. Rock and Soil Mechanics, 2016, (Suppl.2): 571- 577
[22]   张冬梅, 宗翔, 黄宏伟 盾构隧道掘进引起上方已建隧道的纵向变形研究[J]. 岩土力学, 2014, (9): 2659- 2666
ZHANG Dong-mei, ZONG Xiang, HUANG Hong-wei Longitudinal deformation of existing tunnel due to underlying shield tunneling[J]. Rock and Soil Mechanics, 2014, (9): 2659- 2666
[23]   ZHANG Zhi-guo, HUANG Mao-song, XU Chen, et al Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78 (8): 146- 158
[24]   MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil[D]. Thessaloniki: Aristotle University of Thessaloniki, 2003.
[25]   吴为义. 盾构隧道周围地下管线的性状研[D]. 杭州: 浙江大学, 2008.
WU Wei-yi. Study on mechanical behaviors of buried pipelines induced by shield tunneling construction[D]. Hangzhou: Zhejiang University, 2008.
[1] Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.
[2] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[3] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[4] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[5] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[6] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[7] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[8] TENG Tao, XIA Yi-min, YANG Wu-zi, TAN Qing. Characteristics analysis of pressure impact absorption for
shield cutter head drive hydraulic system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 864-868.
[9] SHI Hu, GONG Guo-fang, YANG Hua-yong, WANG Hui. Determination of thrust force for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 126-131.
[10] GENG Tong, YANG Hua-Yong, GONG Guo-Fang. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 358-363+372.
[11] SHU De-Chi, XIE Hui, WANG Jun-Pei, et al. Current limitation mechanism of polymer light-emitting devices[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 209-212.