Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1474-1480    DOI: 10.3785/j.issn.1008-973X.2020.08.004
    
On-line measurement device for viscosity of polymer melt during injection molding process
Jian-feng ZHANG1(),Peng ZHAO1,*(),ZHOU Hong-wei 2,Jian-zhong FU1,Zi-chen CHEN1
1. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
2. Tederic Machinery Co. Ltd, Hangzhou 310018, China
Download: HTML     PDF(1102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A device for measuring the viscosity of the polymer melt during injection molding process was designed and manufactured. The cavity of this non-isothermal and high-shear rate rheological mold is designed as a slit with a thickness of 1 mm or 2 mm. The bottom is un-sealed and the continuous flow of polymer melt can be maintained. The pressure sensors are mounted along the central line of flow direction, thus the melt pressure in the mold cavity can be real time detected. The mold temperature is controlled by the mold temperature machine. A PXIe acquisition card is utilized to acquire, display and record the experimental data. The melt pressure at different locations is measured by pressure sensors. The melt viscosity was calculated according to the corrected law of Newton's shear stress theorem and compared with the theoretical value of the Cross-WLF model. Results show that the designed mold is safe and reliable, and the melt pressure of the low density polyethylene (LDPE) can be detected during the injection molding process. Further, the apparent viscosity evolution of the material during injection molding process can be calculated. Experimental results agree well with the theoretical values in the high shear rate range with the shear rate greater than 500 s?1, the error is within 18%, and the minimum is 4%. This proposed device can realize the online measurement of the melt information during injection molding process.



Key wordspolymer      injection molding      rheology      mold      viscosity      on-line measurement     
Received: 04 July 2019      Published: 28 August 2020
CLC:  TQ 320  
Corresponding Authors: Peng ZHAO     E-mail: 21725029@zju.edu.cn;pengzhao@zju.edu.cn
Cite this article:

Jian-feng ZHANG,Peng ZHAO,ZHOU Hong-wei ,Jian-zhong FU,Zi-chen CHEN. On-line measurement device for viscosity of polymer melt during injection molding process. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1474-1480.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.004     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1474


注射成形中聚合物熔体黏度的在线测量装置

设计并制造在线测量注射成形过程中聚合物熔体黏度变化的装置. 在测量装置中,非等温高剪切流变模具的型腔结构设计成厚度为1 mm或2 mm的狭缝,底部不封口,维持熔体的持续流动;在流动中心线上沿流动方向布置一组压力传感器实时检测聚合物熔体在模具型腔中的压力变化情况,并使用模温机控制模具温度. 使用PXIe采集系统采集、显示、记录实验数据. 实验通过压力传感器测量得到不同位置熔体压力,根据修正的牛顿黏性定律计算熔体黏度,并与Cross-WLF模型的理论值进行对比. 实验结果表明:所设计的模具安全可靠,可获得低密度聚乙烯(LDPE)熔体在注射成形过程中熔体压力的变化情况,从而可以计算出材料在成形过程中的表观黏度演化情况. 实验测量结果与理论值在剪切速率大于500 s?1的高剪切速度范围内较吻合,误差均在18%以内,最小为4%. 该装置能满足真实成形条件下聚合物熔体信息的在线检测要求.


关键词: 聚合物,  注射成形,  流变,  模具,  黏度,  在线检测 
Fig.1 Schematic diagram of cavity structure of rheological mold and pressure sensors arrangement
Fig.2 Schematic diagram of overall structure of rheological mold
Fig.3 Schematic diagram of overall architecture of measurement system for viscosity of polymer melt
Fig.4 Pressure curves of different injection speeds with oil of mold temperature machine set to 100 °C
Fig.5 Pressure curves of different injection speeds with oil of mold temperature machine set to 120 °C
Fig.6 Variety of pressure peaks at different temperatures and injection speeds
Fig.7 Viscosity curve of melt at different mold temperatures with 1 mm thickness cavity
Fig.8 Viscosity curve of melt at different mold temperatures with 2 mm thickness cavity
Fig.9 Corrected viscosity curve of melt with 1 mm thickness cavity
Fig.10 Corrected viscosity curve of melt with 2 mm thickness cavity
[1]   ZHANG J F, ZHAO P, ZHAO Y, et al On-line measurement of cavity pressure during injection molding via ultrasonic investigation of tie bar[J]. Sensors and Actuators A: Physical, 2018, 285 (1): 118- 126
[2]   ZHOU H. Computer modeling for injection molding: simulation, optimization, and control [M]. Hoboken: Wiley, 2013.
[3]   HSU C L, TURNG L S, OSSWALD T A, et al Effect of pressure and supercritical fluid on melt viscosity of LDPE in conventional and microcellular injection molding[J]. International Polymer Processing, 2012, 27 (1): 18- 24
doi: 10.3139/217.2493
[4]   YAO D, CHEN S C, KIM B H Rapid thermal cycling of injection molds: an overview on technical approaches and applications[J]. Advances in Polymer Technology, 2010, 27 (4): 233- 255
[5]   GAO R X, TANG X, GORDON G, et al Online product quality monitoring through in-process measurement[J]. CIRP Annals, 2014, 63 (1): 493- 496
doi: 10.1016/j.cirp.2014.03.041
[6]   赵丽娟, 许琪, 姚燕青, 等 超声波在线检测高分子材料在流变仪中的挤出行为: I[J]. 高分子材料科学与工程, 2013, (8): 146- 149
ZHAO Li-juan, XU Qi, YAO Yan-qing, et al On-line detection of extrusion behavior of polymer materials in rheometer by ultrasonic method: I[J]. Polymer Materials Science and Engineering, 2013, (8): 146- 149
[7]   赵丽娟, 钟琴, 庄红军, 等 超声波在线检测聚合物材料在流变仪中的挤出行为: Ⅱ[J]. 高分子材料科学与工程, 2014, (4): 106- 109
ZHAO Li-juan, ZHONG Qin, ZHUANG Hong-jun, et al On-line detection of extrusion behavior of polymer materials in rheometer by ultrasonic method: Ⅱ[J]. Polymer Materials Science and Engineering, 2014, (4): 106- 109
[8]   K?PPLMAYR T, LUGER H J, BURZIC I, et al A novel online rheometer for elongational viscosity measurement of polymer melts[J]. Polymer Testing, 2016, 50: 208- 215
doi: 10.1016/j.polymertesting.2016.01.012
[9]   LEWANDOWSKI K, PISZCZEK K, ZAJCHOWSKI S, et al Rheological properties of wood polymer composites at high shear rates[J]. Polymer Testing, 2016, 51: 58- 62
doi: 10.1016/j.polymertesting.2016.02.004
[10]   ZATLOUKAL M Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt[J]. Polymer, 2016, 104: 258- 267
doi: 10.1016/j.polymer.2016.04.053
[11]   KLAIBER F. Design, construction and analysis of a high pressure slit rheometer [D]. Wisconsin: University of Wisconsin-Madison, 2005.
[12]   严波, 李阳, 赵朋, 等 基于改进有限体积法的三维注塑成型充模过程数值模拟[J]. 机械工程学报, 2015, 51 (10): 25- 32
YAN Bo, LI Yang, ZHAO Peng, et al 3D simulation of filling stage of plastic injection molding based on improved finite volume method[J]. Journal of Mechanical Engineering, 2015, 51 (10): 25- 32
doi: 10.3901/JME.2015.10.025
[13]   赵朋, 赵耀, 严波, 等 注射成型中聚合物剪切诱导结晶行为的三维模拟[J]. 化工学报, 2017, 68 (11): 4359- 4366
ZHAO Peng, ZHAO Yao, YAN Bo, et al Three-dimensional simulation of shear-induced crystallization for polymers during injection molding process[J]. CIESC Journal, 2017, 68 (11): 4359- 4366
[1] Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.
[2] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[3] Ying LI,Fang CHENG,Zhi-lin ZHAO. Machining precision online measurement of large span pin hole using structured light[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 557-565.
[4] Lu YU,Long-zhe JIN,Ming-wei XU,Jian-guo LIU. Human hemorheology information evaluation based on Hilbert-Huang transform to decompose photoplethysmography signal[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 340-347.
[5] Jia-kai ZHANG,Li NIE,Ke-fa CEN,Xiao JIANG,Hao ZHOU. Experimental study on slagging characteristics during coal and biomass co-combustion with on-line measurement technique[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1955-1963.
[6] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Jian-feng GU. Research progress and related applications of shape memory polymers in four-dimensional printing technology[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 1-16.
[7] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[8] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[9] FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing, HU Jian-hui, ZHANG Da-xu, FANG Guang-qiang, PENG Fu-jun. Finite strain viscoelastic model of shape memory polymer in Prony series form[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1194-1200.
[10] YUAN Rui-feng, SUN Zhi-jian, YANG Ji-hu, YANG Ming, HU Ya-cai, YU Zi-tao. Experimental study on erosion wear behavior of PFA coated stainless steel tube[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 43-49.
[11] GONG Jun-hui, CHEN Yi-xuan, WANG Zhi-rong, JIANG Jun-cheng, LI Jing, ZHOU Yang. Mechanism of non-charring polymer thermal degradation involving two types of heat flux absorption modes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 784-791.
[12] XIE Gui ming, WANG Zhi yang, BAO Yong zhong. Particle formation process of vinylidene chloride suspension copolymerizations in presence of blowing agent[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 378-383.
[13] YANG Wei min, ZHAO Peng, KUANG Tang qing, FU Jian zhong, CHEN Zi chen. Nondestructive measurement for wall thickness of product molded by fluid-assisted co-injection molding using ultrasound[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 192-197.
[14] SUN Xiao wen, ZHANG Wen guang. Substrate roughness affects the properties of PANI coatings for neural electrode[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 913-919.
[15] HAN Xu, MAO Fei yan, HUANG Qun xing, CHI Yong, YAN Jian hua. Influence of impurities on viscosity of oil sludge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2064-2068.