1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
A combining detection method of all-phase fast Fourier transform (apFFT) and analytical mode decomposition was proposed aiming at the harmonic/interharmonic problem with dense frequency in power harmonic signals. Since AMD needs to determine the frequency components in the signal before decomposing, apFFT was used to perform spectrum analysis on the analyzed signals to obtain the values of the frequencies in the spectrum. The flat characteristics of the apFFT phase spectrum were used to determine whether the signal contains dense spectrum frequency component, and the approximate position of dense spectrum harmonic/interharmonic frequency was obtained. If there were dense spectral components, the dense spectrum segment of the signal was optimized by using quantum particle swarm to find the best binary frequency. The power harmonic signal was decomposed into a series of single-frequency signal components through the binary frequency between each frequency component by using AMD method in order to complete the measurement of harmonics with dense frequency. The method is better for the decomposition of harmonic/interharmonic signals with dense frequency compared with Hilbert-Huang transform (HHT) method. The simulation and experimental results showed the effectiveness and accuracy of the proposed method.
Shu-guang SUN,Peng TIAN,Tai-hang DU,Jing-qin WANG. Dense frequency harmonic/interharmonic detection based on apFFT-AMD. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 178-188.
Fig.2All-phase fast Fourier transform amplitude and phase spectrum of single-frequency signals and dense-spectrum signals
Fig.3Diagram of binary frequency
Fig.4ApFFT-AMD flow chart of algorithm
成分
f/Hz
I/A
θ/(°)
间谐波
20.0
1
10
基波
50.2
15
30
谐波
100.4
8
200
间谐波
228.0
4
100
间谐波
520.0
2
250
Tab.1Signal parameters of example 1
Fig.5Amplitude spectrum of signal
Fig.6Phase spectrum of signal
Fig.7Original signal and decomposition results of this paper
Fig.8Decomposition results of EMD
分量
本文方法
EMD
fe/Hz
ξf/%
Ie/A
ξI/%
fe/Hz
ξf/%
Ie/A
ξI/%
1
20.07
0.35
1.04
4.00
19.92
0.40
0.86
14.00
2
50.08
0.24
14.96
0.27
49.92
0.56
14.28
4.80
3
99.95
0.45
7.99
0.13
99.92
0.48
8.00
0.00
4
228.00
0.00
4.00
0.00
227.93
0.03
3.96
1.00
5
519.98
0.01
2.00
0.00
519.91
0.02
2.00
0.00
Tab.2Parameter detection results of each component with proposed method and EMD
成分
f/Hz
I/A
θ/(°)
间谐波
20
1
10
基波
50
15
30
间谐波
160
1
200
间谐波
162
2
100
谐波
250
6
250
Tab.3Signal parameters of example 2
Fig.9Amplitude spectrum of signal
Fig.10Phase spectrum of signal
Fig.11Trend graph of fitness value and particle position
Fig.12Original signal and decomposition results of this paper
Fig.13Decomposition results of EMD
Fig.14Instantaneous amplitude and frequency of single-frequency signal components
Fig.15Semi-physical overall scheme of experiment
Fig.16Semi-physical experimental equipment
成分
f/Hz
I/A
θ/(°)
间谐波
25
2
20
基波
50
20
80
谐波
150
10
200
间谐波
152
3
90
谐波
250
8
250
Tab.4Specific parameters of signal model
Fig.17Amplitude spectrum of measured current signal
Fig.18Phase spectrum of measured current signal
Fig.19Measured current signal and decomposition results of this paper
Fig.20Instantaneous amplitude and frequency of single frequency component of measured current signal
分量
fe/Hz
ξf/%
Ie/A
ξI/%
$x_1$
24.99
0.04
1.98
1.00
$x_2$
50.00
0.00
19.84
0.80
$x_3$
150.00
0.00
9.91
0.90
$x_4$
151.98
0.01
2.98
0.67
$x_5$
250.00
0.00
7.93
0.88
Tab.5AMD parameter detection results of each component
[1]
DAVIS E J, EMANUEL A E Harmonic pollution metering: theoretical consideration[J]. IEEE Transactions on Power Delivery, 2000, 15 (1): 19- 23
doi: 10.1109/61.847223
[2]
喻敏, 王斌, 王文波, 等 基于同步挤压小波变换的电力系统时变谐波检测[J]. 电工技术学报, 2017, 32 (1): 50- 57 YU Min, WANG Bin, WANG Wen-bo, et al Power system time-varying transient harmonics detection baesd on SWT[J]. Transactions of China Electrotechnical Society, 2017, 32 (1): 50- 57
[3]
杨名, 陈红卫 一种基于小波包和apFFT的间谐波检测方法[J]. 电力系统保护与控制, 2017, 45 (15): 112- 117 YANG Ming, CHEN Hong-wei A method to detect inter-harmonics based on wavelet packet and apFFT[J]. Power System Protection and Control, 2017, 45 (15): 112- 117
doi: 10.7667/PSPC161039
[4]
朱宁辉, 白晓民, 董伟杰 基于EEMD的谐波检测方法[J]. 中国电机工程学报, 2013, 33 (7): 92- 98 ZHU Ning-hui, BAI Xiao-min, DONG Wei-jie Harmonic detection method based on EEMD[J]. Proceeding of the CSEE, 2013, 33 (7): 92- 98
[5]
张宇辉, 贺健伟, 李天云, 等 基于数学形态学和HHT的谐波和间谐波检测方法[J]. 电网技术, 2008, 32 (17): 46- 51 ZHANG Yu-hui, HE Jian-wei, LI Tian-yun, et al A new method to detect harmonics and inter-harmonics based on mathematical morphology and Hilbert-Huang transform[J]. Power System Technology, 2008, 32 (17): 46- 51
[6]
翟晓军, 周波 一种改进的插值FFT谐波分析算法[J]. 中国电机工程学报, 2016, 36 (11): 2952- 2958 ZHAI Xiao-jun, ZHOU Bo An improved interpolated FFT algorithm for harmonic analysis[J]. Proceedings of the CSEE, 2016, 36 (11): 2952- 2958
[7]
黄建明, 李晓明 结合短时傅里叶变换和谱峭度的电力系统谐波检测方法[J]. 电力系统保护与控制, 2017, 45 (7): 43- 50 HUANG Jian-ming, LI Xiao-ming Detection of harmonic in power system based on short-time Fourier transform and spectral kurtosis[J]. Power System Protection and Control, 2017, 45 (7): 43- 50
doi: 10.7667/PSPC160506
[8]
ZHU T X Exact harmonic/interharmonics calculation using adaptive window width[J]. IEEE Transactions on Power Delivery, 2007, 47 (1): 2279- 2288
[9]
喻敏, 王斌, 王文波, 等 基于SST的间谐波检测方法[J]. 中国电机工程学报, 2016, 36 (11): 2944- 2951 YU Min, WANG Bin, WANG Wen-bo, et al An inter-harmonic detection method based on synchrosqueezing wavelet transform[J]. Proceeding of the CSEE, 2016, 36 (11): 2944- 2951
[10]
贾清泉, 姚蕊, 王宁, 等 一种应用原子分解和加窗频移算法分析频率相近谐波/间谐波的方法[J]. 中国电机工程学报, 2014, 34 (27): 4605- 4612 JIA Qing-quan, YAO Rui, WANG Ning, et al An approach to detect harmonics/inter-harmonics with closing frequencies using atomic decomposition and windowed frequency shifting algorithm[J]. Proceeding of the CSEE, 2014, 34 (27): 4605- 4612
[11]
孙曙光, 庞毅, 刘建强 基于Hilbert频移的EEMD谐波检测方法[J]. 电力系统保护与控制, 2017, 45 (15): 85- 91 SUN Shu-guang, PANG Yi, LIU Jian-qiang EEMD harmonic detection method based on frequency shift of Hilbert[J]. Power System Protection and Control, 2017, 45 (15): 85- 91
doi: 10.7667/PSPC161124
[12]
CHEN G D, WANG Z C A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechanical Systems and Signal Processing, 2011, 2 (28): 258- 279
[13]
时培明, 苏翠娇, 赵娜, 等 基于解析模态分解的机械故障诊断方法[J]. 中国机械工程, 2016, 27 (5): 674- 679 SHI Pei-ming, SU Cui-jiao, ZHAO Na, et al Fault diagnosis method for rotating machinery based on AMD[J]. Chinese Mechanical Engineering, 2016, 27 (5): 674- 679
doi: 10.3969/j.issn.1004-132X.2016.05.018
[14]
FELDMAN M A signal decomposition or lowpass filtering with Hilbert transform[J]. Mechanical Systems and Signal Processing, 2011, 25 (8): 3205- 3208
doi: 10.1016/j.ymssp.2011.04.016
[15]
FELDMAN M Hilbert transform in vibration analysis[J]. Mechanical Systems and Signal Processing, 2011, 25 (3): 735- 802
doi: 10.1016/j.ymssp.2010.07.018
[16]
王佐才, 任伟新 基于解析模式分解的密集工作模态参数识别[J]. 噪声与振动控制, 2013, 18 (7): 18- 31 WANG Zuo-cai, REN Wei-xin Parameter identification of closely spaced structural modals based on analytical mode decomposition[J]. Noise and Vibration Control, 2013, 18 (7): 18- 31
[17]
时培明, 苏翠娇, 韩东颖 基于AMD-HHT的非平稳信号紧密间隔频率检测[J]. 仪器仪表学报, 2014, 35 (12): 2817- 2825 SHI Pei-ming, SU Cui-jiao, HAN Dong-ying Closely spaced frequency component detection method of non-stationary signal based on AMD and HHT[J]. Chinese Journal of Scientific Instrument, 2014, 35 (12): 2817- 2825
[18]
黄翔东, 王兆华, 罗蓬, 等 全相位FFT密集谱识别与校正[J]. 电子学报, 2011, 39 (1): 172- 177 HUANG Xiang-dong, WANG Zhao-hua, LUO Peng, et al Discrimination and correction for dense all-phase FFT spectrums[J]. Acta Electronica Sinica, 2011, 39 (1): 172- 177
邹培源, 黄纯, 江辉, 等 基于全相位谱细化与校正的谐波和间谐波测量方法[J]. 电网技术, 2016, 40 (8): 2496- 2502 ZOU Pei-yuan, HUANG Chun, JIANG Hui, et al Method of harmonics and interharmonics measurement based on all-phase spectrum zoom and correction[J]. Power System Technology, 2016, 40 (8): 2496- 2502
[21]
SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior [C] // IEEE Proceedings of Congress on Evolutionary Computation. USA: IEEE, 2004: 326-331.
[22]
吕干云, 方奇品, 蔡秀珊 一种基于粒子群优化算法的间谐波分析方法[J]. 电工技术学报, 2009, 24 (12): 156- 161 LV Gan-yun, FANG Qi-pin, CAI Xiu-shan A method for inter-harmonics analysis based on PSO[J]. Transactions of China Electrotechnical Society, 2009, 24 (12): 156- 161
doi: 10.3321/j.issn:1000-6753.2009.12.025