Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 189-195    DOI: 10.3785/j.issn.1008-973X.2020.01.022
Biomedical Engineering, Chemical Engineering     
Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation
Yin-fei ZHENG(),Yong-gui QIN,Ji-ye AN,Wen-xin FU
Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1228KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An ultrasonic temperature measurement method combining pyroelectric sensor and temperature-dependent attenuation coefficient was proposed aiming at the influence of the change of ultrasonic signal direction on ultrasonic temperature measurement caused by inhomogeneous medium. A temperature measurement model consisting of ultrasound, test object and pyroelectric sensor was constructed and demonstrated. A sensor with high sound absorption characteristics was designed and fabricated in order to evaluate its response to the ultrasonic signal. Results showed that the output voltage of the sensor was proportional to the reached ultrasonic power. The power sensitivity was 3.117 mV/W, and the measurement error was less than 2.5%. The accuracy of the temperature measurement method was evaluated by estimating the temperature of the pork. The correlation between the sensor output signal time domain energy and the tissue temperature was 0.975 5. The estimated temperature value of the method was basically the same as that of the thermocouple, and the estimated error was less than 3.95 °C. The experimental results show that the pyroelectric sensor and ultrasound can measure the temperature change of the tissue.



Key wordsultrasound thermometry      pyroelectric effect      attenuation coefficient     
Received: 30 March 2019      Published: 05 January 2020
CLC:  R 445  
Cite this article:

Yin-fei ZHENG,Yong-gui QIN,Ji-ye AN,Wen-xin FU. Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 189-195.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/189


热释电效应与超声衰减结合的离体温度估计

针对不规则介质引起的超声信号方向改变对超声测温的影响,提出结合热释电传感器和衰减系数温变性的超声测温方法. 构建并论证由超声、待测体和热释电传感器组成的测温模型. 设计制作具有高吸声特性的传感器,评价该传感器的超声信号的响应性能. 结果显示,传感器的输出电压与到达的超声功率成正比,功率灵敏度为3.117 mV/W,测量误差小于2.5%. 通过估计离体猪肉组织温度验证测温方法的准确性,传感器的输出信号时域能量与组织温度的相关性达到0.975 5,该方法估计的温度与热电偶测量值基本一致,估计误差小于3.95 °C. 实验结果表明,利用热释电传感器与超声能够测量出组织的温度的变化.


关键词: 超声测温,  热释电传感器,  衰减系数 
Fig.1 Ultrasonic temperature measurement
Fig.2 Ultrasonic incident sensor
Fig.3 Effect of infinitesimal circular heat source on film-backing interface
Fig.4 Equivalent circuit diagram of pyroelectric sensor
Fig.5 Eyroelectric sensor structure
参数 数值
Ds/mm 15
dPVDF/μm 50
pc/(μC·K?1 ·m?2 40
αPVDF/(dB·cm?1 9.4
α/(dB·cm?1 64
ρ2/(kg·m?3 1 910
c2/(m·s?1 1 000
κ/(W·m?1 ·K?1 0.334
C/nF 12.7
Tab.1 Pyroelectric sensor parameters
Fig.6 Temperature measurement experiment
Fig.7 Pyroelectric signal when transducer is driven at 7 W
Fig.8 Sensor output signal for 5 times under the same conditions
Fig.9 Sensor output signal when ultrasonic irradiation time is 2,4,6,8 s
Fig.10 Signal peaks of sensor output at 5 different driving powers
Fig.11 Relationship between sensor signal energy and tissue temperature
Fig.12 Estimated temperature and thermocouple measurements
[1]   NOVAK P Noninvasive temperature monitoring using ultra-sound tissue characterization method[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4325: 566- 574
[2]   ALVARENGA A V, WILKENS V, GEORG O, et al Non-invasive estimation of temperature during physiotherapeutic ultrasound application using the average gray-level content of B-mode images: a metrological approach[J]. UltraSound in Medicine and Biology, 2017,
[3]   JOO C M, SITARAMANJANEYA R G, JOO M L, et al Changes in ultrasonic properties of liver tis-sue in-vitro during heating-cooling cycle concomitant with thermal coagulation[J]. Ultrasound in Medicine and Biology, 2011, 37 (12): 2000- 2012
doi: 10.1016/j.ultrasmedbio.2011.06.015
[4]   ARTHUR R M, STRAUBE W L, TROBAUGH J W Non-invasive estimation of hyperthermia temperatures with ultra-sound[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2005, 21 (6): 589- 600
doi: 10.1080/02656730500159103
[5]   SEIP R, EBBINI E S Noninvasive estimation of tissue tem-perature response to heating fields using diagnostic ultrasound[J]. IEEE Transactions on Biomedical Engineering, 1995, 42 (8): 828- 839
doi: 10.1109/10.398644
[6]   KIM Y, AUDIGIER C, ZIEGLE J Ultrasound thermal monitoring with an external ultrasound source for customized bipolar RF ablation shapes[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13 (6): 815- 826
doi: 10.1007/s11548-018-1744-4
[7]   LIU X, GONG X, YIN C Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging[J]. Ultrasound in Medicine and Biology, 2008, 34 (3): 414- 424
doi: 10.1016/j.ultrasmedbio.2007.09.006
[8]   ARTHUR R M, DEBOMITA B, YUZHENG G 3D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57 (8): 1724
doi: 10.1109/TUFFC.2010.1611
[9]   牛金海, 张红煊, 王鸿樟 基于离散随机介质平均散射声功率的无损测温方法[J]. 声学学报, 2001, 26 (3): 247- 253
NIU Jin-hai, ZHANG Hong-xuan, WANG Hong-zhang Non-invasive temperature estimation in biotissue as a discrete random medium based on backscattered average ultrasonic power[J]. Chinese Journal of Acoustics, 2001, 26 (3): 247- 253
doi: 10.3321/j.issn:0371-0025.2001.03.010
[10]   CLARKE R L, BUSH N L, HAAR G R T The changes in acoustic attenuation due to in vitro heating[J]. Ultrasound in Medicine and Biology, 2003, 29 (1): 127- 135
doi: 10.1016/S0301-5629(02)00693-2
[11]   FüZESI K, ILYINA N, VERBOVEN E Temperature de-pendence of speed of sound and attenuation of porcine left ventricular myocardium[J]. Ultrasonics, 2017, 82: 246- 251
[12]   CUCCARO R, MAGNETTO C, ALBO P A G Temperature increase dependence on ultrasound attenuation coefficient in innovative tissue-mimicking materials[J]. Physics Procedia, 2015, 70: 187- 190
doi: 10.1016/j.phpro.2015.08.109
[13]   NYBORG W L, HILL C R, BAMBER J C Physical princi-ples of medical ultrasonics[J]. Journal of the Acoustical Society of America, 2004, 116 (12): 2707
[14]   BUSSE L J Detection of spatially non-uniform ultrasonic radiation with phase sensitive (piezoelectric) and phase in-sensitive (acoustoelectric) receivers[J]. Journal of the Acoustical Society of America, 1981, 70 (5): 1377- 1386
doi: 10.1121/1.387128
[15]   LI X, LU S G, CHEN X Z Pyroelectric and electrocaloric materials[J]. Journal of Materials Chemistry C, 2012, 1 (1): 23- 37
[16]   NYBORG W L Solutions of the bio-heat transfer equation[J]. Physics in Medicine and Biology, 1988, 33 (7): 785- 792
doi: 10.1088/0031-9155/33/7/002
[17]   AL ABDULLAH K, BATAL M A, HAMDAN R The en-hancement of PVDF pyroelectricity (pyroelectric coefficient and dipole moment) by inclusions[J]. Energy Procedia, 2017, 119: 545- 555
doi: 10.1016/j.egypro.2017.07.074
[18]   ZEQIRI B, ZAUHAR G, HODNETT M Progress in devel-oping a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect[J]. Ultrasonics, 2011, 51 (4): 420- 424
doi: 10.1016/j.ultras.2010.09.006
[19]   POUCH A M, CARY T W, SCHULTZ S M In vivo nonin-vasive temperature measurement by B-mode ultrasound imaging[J]. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 2010, 29 (11): 1595- 1606
[20]   DANIELS M J, TOMY V Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation[J]. Physics in Medicine and Biology, 2010, 55 (16): 4735- 4753
doi: 10.1088/0031-9155/55/16/008
[21]   盛磊, 吴薇薇, 周著黄 基于超声衰减系数的微波热疗无损测温[J]. 北京生物医学工程, 2014, 33 (6): 620- 626
SHENG Lei, WU Wei-wei, ZHOU Zhu-huang Noninvasive temperature estimation of microwave hyperthermia based on ultrasound attenuation coefficients[J]. Beijing Biomedical Engineering, 2014, 33 (6): 620- 626
doi: 10.3969/j.issn.1002-3208.2014.06.12
[1] LIU Cheng-bin, BIAN Zu-guang, CHEN Wei-qiu. Three-dimensional pyroelectric analysis of
multilayered piezoelectric spherical shell
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1067-1073.