Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 388-398    DOI: 10.3785/j.issn.1008-973X.2019.02.023
Electric Engineering     
DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency
Shuo-feng ZHAO(),Xiao-yan HUANG*(),You-tong FANG
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1873KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel compensation strategy for selected harmonics elimination pulse width modulation (SHEPWM) was proposed to suppress the current and torque ripple of railway traction motor caused by DC-link voltage fluctuation. Synchronous processing sections were decided according to the number of pulse per fundamental cycle of the modulation. A repetitive predictor was employed to predict the DC-link voltage pattern in the next section. Flux error of the next section was then estimated and the switching instants in the section were accordingly adjusted to compensate the flux error. Experiments were run on an 18 kW traction interior-mounted permanent magnet synchronous motor (IPMSM) with the proposed compensation strategy, with the average DC-link voltage compensation and without any compensation. Results showed that the proposed strategy can significantly eliminate the low-order harmonic current components and motor torque ripple caused by the DC-link voltage fluctuation, and was more effective than average DC-link voltage compensation.



Key wordsrailway traction      DC-link voltage fluctuation      selected harmonics elimination pulse width modulation (SHEPWM)      repetitive predictor      permanent magnet synchronous motor (PMSM)     
Received: 17 January 2018      Published: 21 February 2019
CLC:  TH 133  
Corresponding Authors: Xiao-yan HUANG     E-mail: 3090101746@zju.edu.cn;huangxiaoyan@zju.edu.cn
Cite this article:

Shuo-feng ZHAO,Xiao-yan HUANG,You-tong FANG. DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 388-398.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.023     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/388


低开关频率选择谐波消除调制的母线波动补偿

提出基于选择谐波消除脉宽调制(SHEPWM)的补偿策略,用于抑制由直流母线电压波动引起的列车牵引电机电流与转矩波动. 根据每一基波周期内的调制脉冲数确定同步处理区间,使用重复预测器对下一处理区间内的直流母线电压波形进行预测. 根据预测的母线电压波形与开关时刻估计下一处理区间内的磁链误差,并相应地调整开关时刻以消除磁链误差. 在18 kW永磁体内置式永磁同步电动机(IPMSM)上分别对采用完整的补偿策略、采用近似的处理区间内平均母线电压补偿策略与不采用任何补偿策略的情况进行实验. 结果表明提出的补偿策略能显著降低由直流母线电压波动所引起的低次电流谐波和电机转矩波动,且相比近似的处理区间内平均母线电压补偿策略具有更好的电流与转矩波动抑制效果.


关键词: 列车牵引,  直流母线电压波动,  选择谐波消除脉宽调制(SHEPWM),  重复预测器,  永磁同步电机(PMSM) 
Fig.1 AC-DC-AC topology for railway traction system
Fig.2 Simulation result of motor phase current under influence of DC-link voltage fluctuation
Fig.3 Simulation result of motor electromagnetic torque under influence of DC-link voltage fluctuation
Fig.4 General structure of traction control system
Fig.5 Processing sections and typical stator flux trajectories under different SHEPWM modes
Fig.6 Principle of moving prediction window
Fig.7 Simulation result of DC-link voltage actual value, frontend predicted value and current instant predicted value
Fig.8 Calculation of stator flux error
Fig.9 Compensation of stator flux error
Fig.11 Hardware and software configuration of embedded control system
项目 符号/单位 数值
额定功率 Pn/kW 18
额定转速 Nn/(r·min?1) 3 000
额定转矩 Tn/(N·m) 57
效率 η/% 98
额定线电压 Vn-l/V 350
相数 M 3
极对数 P 3
定子相电阻 Rs 0.028
直轴电感 Ld/H 0.001
交轴电感 Lq/H 0.002 5
Tab.1 Machine specifications in experiments
Fig.10 Controller setup and experiment platform
Fig.13 Experimental results of DC-link voltage, machine line-to-line voltage and machine phase current under different SHEPWM modes with proposed compensation employed
Fig.12 Experimental results of DC-link voltage, machine line-to-line voltage and machine phase current under different SHEPWM modes with no compensation
Fig.14 Experimental results of DC-link voltage, machine line-to-line voltage and machine phase current under different SHEPWM modes with direct average compensation employed
Fig.15 Vibration sensor
补偿使用情况 SHEPWM模式 vv/(mm?s?1 av/(mm?s?2
无补偿 7APQ 13.7 29.2
无补偿 5APQ 13.9 27.5
无补偿 3APQ 13.2 25.8
无补偿 1APQ 16.9 51.5
直接平均法 7APQ 11.1 19.5
直接平均法 5APQ 11.3 19.9
直接平均法 3APQ 12.7 21.7
直接平均法 1APQ 15.1 32.9
本研究提出的方法 7APQ 5.9 10.7
本研究提出的方法 5APQ 8.7 15.7
本研究提出的方法 3APQ 7.4 14.6
本研究提出的方法 1APQ 7.6 13.2
Tab.2 Measured vibration values with no compensation,direct average compensation and proposed compensation
[1]   李勇. CRH1型动车组牵引传动系统仿真研究[D]. 成都:西南交通大学, 2012: 9.
LI Yong. CRH1 Type EMU traction drive system simulation research [D]. Chengdu: Southwest Jiaotong University, 2012: 9.
[2]   宋雷鸣. 动车组传动与控制[M]. 北京: 中国铁道出版社, 2009.
[3]   魏振兴. CRH2型动车组传动控制系统仿真[D]. 成都: 西南交通大学, 2012: 15.
WEI Zhen-xing. The simulation of CRH2 type EMU transmission control system [D]. Chengdu: Southwest Jiaotong University, 2012: 15.
[4]   熊盛艳. CRH5型动车组牵引变流器的研究[D]. 成都: 西南交通大学, 2013: 4.
XIONG Sheng-yan. The study of the traction converter in electrical multiple units of CRH5. Chengdu: Southwest Jiaotong University, 2013: 4.
[5]   邹档兵 CRH系列动车组牵引变流器主电路分析[J]. 铁道机车车辆, 2017, 37 (2): 42- 46
ZOU Dang-bing Traction converter power circuits analysis of CRHx[J]. Railway Locomotive & Car, 2017, 37 (2): 42- 46
doi: 10.3969/j.issn.1008-7842.2017.02.09
[6]   AKAGI H, KANAZAWA Y, NABAE A Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications, 1984, 20 (3): 625- 630
[7]   孙大南. 地铁车辆牵引电传动系统控制关键技术研究[D]. 北京: 北京交通大学, 2012: 4–54.
SUN Da-nan. Research on key control technologies of electric traction drive system for metro cars [D]. Beijing: Beijing Jiaotong University, 2012: 4–54.
[8]   KIM J, JEONG I, LEE K, et al Fluctuating current control method for a PMSM along constant torque contours[J]. IEEE Transactions on Power Electronics, 2014, 29 (11): 6064- 6073
doi: 10.1109/TPEL.2014.2299548
[9]   SALAM Z, GOODMAN C. Compensation of fluctuating DC link voltage for traction inverter drive [C]// Sixth International Conference on Power Electronics and Variable Speed Drives. Nottingham: IET, 1996: 390–395.
[10]   HADJI S, TOUHAMI O, GOODMAN C Vector -optimised harmonic elimination for single-phase pulse-width modulation inverters/converters[J]. IET Electric Power Applications, 2007, 1 (3): 423- 432
doi: 10.1049/iet-epa:20060213
[11]   CHEN Y M, HSIEH C H, CHENG Y M. Modified SPWM control schemes for three-phase inverters [C] // 4th IEEE International Conference on Power Electronics and Drive Systems. Denpaser: IEEE, 2001: 651–656.
[12]   FUNABIKI S, SAWADA Y. A computative decision of pulse width in three-phase PWM inverter [C]// 1988 IEEE Industry Applications Society Annual Meeting. Pittsburgh: IEEE, 1988: 694–699.
[13]   ENJETI P, SHIREEN W A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms[J]. IEEE Transactions on Power Electronics, 1992, 7 (1): 171- 180
doi: 10.1109/63.124589
[14]   GOU B, FENG X, SONG W, et al. Analysis and compensation of beat phenomenon for railway traction drive system fed with fluctuating DC-link voltage [C]// 7th International Power Electronics and Motion Control Conference. Harbin: IEEE, 2012: 654–659.
[15]   董侃. 动车组牵引逆变控制关键技术与系统性能优化研究[D]. 北京:北京交通大学, 2015, 17–43.
DONG Kan. Research on key control technologies and performance optimization of traction drive system for EMUs [D]. Beijing: Beijing Jiaotong University, 2015, 17–43.
[16]   OUYANG H, ZHANG K, ZHANG P, et al Repetitive compensation of fluctuating DC link voltage for railway traction drives[J]. IEEE Transactions on Power Electronics, 2011, 26 (8): 2160- 2171
doi: 10.1109/TPEL.2011.2105283
[17]   赵卫, 刘文生 牵引变流器网侧电流低次谐波抑制的研究[J]. 机车电传动, 2017, 3: 24- 29
ZHAO Wei, LIU Wen-sheng Research on suppression of net-side low-order harmonics current in traction converter[J]. Electric Drive for Locomotive, 2017, 3: 24- 29
[18]   HOLTZ J Pulse width modulation: a survey[J]. IEEE Transactions on Industrial Electronics, 1992, 39 (5): 410- 420
doi: 10.1109/41.161472
[19]   HOLMES D, LIPO T. Pulse width modulation for power converters: principle and practice [M]. New Jersey: Wiley-IEEE Press, 2003: 396–415.
[20]   韦克康, 郑琼林, 周明磊, 等 低开关频率下混合脉宽调制方法研究[J]. 北京交通大学学报, 2011, 35 (5): 106- 112
WEI Ke-kang, ZHENG Qiong-lin, ZHOU Ming-lei, et al Study on a hybrid PWM method under low switching frequency[J]. Journal of Beijing Jiaotong University, 2011, 35 (5): 106- 112
doi: 10.3969/j.issn.1673-0291.2011.05.020
[21]   王堃, 游小杰, 王琛琛, 等 低开关频率下SHEPWM和SVPWM同步调制策略比较研究[J]. 电工技术学报, 2015, 30 (14): 333- 341
WANG Kun, YOU Xiao-jie, WANG Chen-chen, et al Research on the comparison of synchronized modulation of SHEPWM and SVPWM under low switching frequency[J]. Transactions of China Electrotechnical Society, 2015, 30 (14): 333- 341
doi: 10.3969/j.issn.1000-6753.2015.14.045
[1] LI Quan-feng, HUANG Su-rong, HUANG Hou-jia. Noise and torque characteristics of permanent magnet synchronous motor with unequal pole arc structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2210-2217.
[2] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. Optimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 173-180.
[3] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. ptimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1-8.