A general bare bones particle swarm optimization (BBPSO) form was presented, which consists of four key elements. In the implementation of BBPSO, whether the different dimensions of a particle use the same random variable or not conduct to two different algorithms. Denote the former as BBPSO-I, and the latter as BBPSO-II. Experimental results indicate that BBPSO-I is a rotational invariant algorithm with poor swarm diversity, while BBPSO-II is rotational variant with better swarm diversity and general performance. The using of Gaussian, Cauchy, Exponential or Uniform distribution makes particles of BBPSO-II tend to move along the axes. These features were clarified by theoretical analysis. Some advice on the application of BBPSO was given. BBPSO-I is suitable for unimodal functions with obvious gradient descent, while BBPSO-II obtains generally better performance, especially on optimizing functions with peaks along axes.
ZHANG Zhen, PAN Zai-ping, PAN Xiao-hong. Different implementations of bare bones particle swarm optimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1350-1357.
[1] KENNEDY J. Bare bones particle swarms [C]∥ Proceedings of the Swarm Intelligence Symposium. Indiana: IEEE,2003: 80-87.
[2] SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization [C]∥ Conference on Cybernetics and Intelligent Systems. Singapore: IEEE, 2004: 111-116.
[3] SUN J, FANG W, WU X, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection [J]. Evolutionary Computation, 2012, 20(3): 349-393.
[4] FANG W, SUN J, DING Y, et al. A review of quantum-behaved particle swarm optimization [J]. IETE Technical Review, 2010, 27(4): 336-348.
[5] ZHANG H, FERNNDEZ-VARGAS J A, RANGAIAH G P, et al. Evaluation of integrated differential evolution and unified bare-bones particle swarm optimization for phase equilibrium and stability problems [J]. Fluid Phase Equilibria, 2011, 310(1): 129-141.
[6] YAO J, HAN D. Improved barebones particle swarm optimization with neighborhood search and its application on ship design [J]. Mathematical Problems in Engineering, 2013, 2013(1): 113.
[7] RICHER T J, BLACKWELL T. The Lévy particle swarm [C]∥ IEEE Congress on Evolutionary Computation. Vancouver: IEEE, 2006: 808-815.
[8] AL-RIFAIE M M, BLACKWELL T. Bare bones particle swarms with jumps [C]∥Algorithmic Number Theory Symposium.Brussels:Springer, 2012: 49-60.
[9] BLACKWELL T. A study of collapse in bare bones particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372.
[10] HSIEH H, LEE T. A modified algorithm of bare bones particle swarm optimization [J]. International Journal of Computer Science Issues, 2010, 7(6): 12-17.
[11] LI Y, XIANG R, JIAO L, et al. An improved cooperative quantum-behaved particle swarm optimization [J]. Soft Computing, 2012, 16(6): 1061-1069.
[12] ZHANG Y, GONG D, SUN X, et al. Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis [J]. Soft Computing, 2013, 18(7): 116.
[13] ZHANG Y, GONG D, GENG N, et al. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects [J]. Applied Soft Computing, 2014, 5(18): 248-260.
[14] 史丽萍,王攀攀,胡泳军,等. 基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155.
SHI Li-ping, WANG Pan-pan, HU Yong-jun, et al. Broken rotor bar fault diagnosis of induction motors based on bare-bone particle swarm optimization [J]. Transactions of China Electricotechnical Society, 2014, 29(1): 147-155.
[15] CAMPOS M, KROHLING R A. Hierarchical bare bones particle swarm for solving constrained optimization problems [C]∥ IEEE Congress on Evolutionary Computation. Cancun: IEEE, 2013: 805-812.
[16] CHANG Y, CHUEH C, XU Y, et al. Bare bones particle swarm optimization with considering more local best particles [C]∥ International Symposium on Instrumentation and Measurement, Sensor Network and Automation. Toronto : IEEE, 2013: 1105-1108.
[17] SPEARS W M, GREEN D T, SPEARS D F. Biases in particle swarm optimization [J]. International Journal of Swarm Intelligence Research, 2010, 1(2): 34-57.
[18] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.