Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1610-1617    DOI: 10.3785/j.issn.1008-973X.2019.08.020
Chemical Engineering, Biological Engineering     
Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction
Shi-cheng HOU(),Wang-yu REN,Qing ZHU,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310013, China
Download: HTML     PDF(1343KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to develop cost-effective electrocatalysts for hydrogen evolution reaction (HER), Ni-doped MoS2/graphene (Nix-MoS2/G, x=0.03, 0.05, 0.10) hybrids were fabricated by one-pot hydrothermal method. The hybrids were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS). The effects of Ni-doping on the microstructure and the electrocatalytic HER activity of the hybrids were investigated. Results showed that the Ni-doped MoS2/G catalysts exhibited better electrocatalytic HER activity than MoS2/G catalyst. Among these hybrids, the Ni0.05-MoS2/G hybrid (the mole ratio of Ni∶Mo for 1∶20 in the hydrothermal reaction system) exhibited the highest electrocatalytic HER activity with a Tafel slope of 50.8 mV/dec. The improvement of electrocatalytic activity can be contributed to that the rotational Ni-doping changes the morphology of the hybrid in which MoS2 nanosheets can be well dispersed on the surface of graphene and more active sites for HER are displayed. In addition, Ni-doping enhances the intrinsic catalytic activity of MoS2 edge sites for HER.



Key wordshydrogen evolution reaction      electrocatalyst      hydrothermal reaction      composite      molybdenum disulfide (MoS2)     
Received: 11 May 2018      Published: 13 August 2019
CLC:  TQ 116  
Corresponding Authors: Wei-xiang CHEN     E-mail: shicheng_hou@163.com;weixiangchen@zju.edu.cn
Cite this article:

Shi-cheng HOU,Wang-yu REN,Qing ZHU,Wei-xiang CHEN. Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1610-1617.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.020     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1610


Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性

为了制备高效、低成本的析氢反应电催化剂,采用一步水热法制备镍掺杂二硫化钼/石墨烯复合材料(Nix-MoS2/G,x=0.03,0.05,0.10),并用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)和X-射线光电子能谱(XPS)对其进行表征,讨论镍掺杂对复合材料的微观结构和电催化析氢性能的影响. 结果表明,与MoS2/G催化剂相比,镍掺杂的MoS2/G催化剂显示了更高的电催化析氢性能,尤其当水热反应体系中的Ni和Mo的摩尔比为1∶20时,制备的Ni0.05-MoS2/G显示了最强的电催化析氢性能,其塔菲尔斜率为50.8 mV/dec. 电催化活性的增强主要是由于少量镍的掺杂改变了复合催化剂的形貌,使MoS2纳米片更好地负载在石墨烯表面,暴露出更多的催化活性位点,同时镍掺杂提高了MoS2边缘活性位的固有催化活性.


关键词: 析氢反应,  电催化,  水热反应,  复合材料,  二硫化钼(MoS2) 
Fig.1 XRD patterns of hydrothermal-prepared samples
Fig.2 SEM images of hydrothermal-prepared samples
Fig.3 TEM/HRTEM images of hydrothermal-prepared samples
Fig.4 XPS high-resolution scans of Ni0.05-MoS2/G hybrid
Fig.5 Polarization curves and corresponding Tafel slopes of HER on various catalytic electrodes
Fig.6 Cyclic voltammogram of Ni0.05-MoS2/G hybrid and curves of current density at different scan rates
Fig.7 Turnover frequency of various catalytic electrodes for HER
Fig.8 EIS Nyquist plots of HER on various catalytic electrodes and corresponding equivalent circuit models
电极 Rs Rct
MoS2 6.1 1 359
MoS2/G 5.3 630
Ni0.03-MoS2/G 5.0 347
Ni0.05-MoS2/G 5.2 185
Ni0.1-MoS2/G 5.5 451
Tab.1 Kinetic parameters obtained by fitting EIS response
[1]   CHU S, MAJUMDAR A Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488 (7411): 294- 303
doi: 10.1038/nature11475
[2]   EFTEKHARI A Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42 (16): 53- 77
[3]   CHEN Y, YANG K, JIANG B, et al Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5 (18): 187- 208
[4]   GUPTA U, RAO C Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides [J]. Nano Energy, 2017, 41: 49- 65
doi: 10.1016/j.nanoen.2017.08.021
[5]   王晓, 姚晓莉, 侯鉴峰, 等 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报: 工学版, 2014, 48 (7): 1273- 1277
WANG Xiao, YAO Xiao-li, HOU Jian-feng, et al Non-isothermal crystallization of aqueous graphene oxide suspensions[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1273- 1277
[6]   LI Y G, WANG H L, XIE L M, et al MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2011, 133 (19): 6- 9
[7]   YIN Y, MIAO P, ZHANG Y, et al Significantly increased raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition [J]. Advanced Functional Materials, 2017, 27 (16): 16066- 16094
[8]   BONDE J, MOSES P G, JARAMILLO T F, et al Hydrogen evolution on nano-particulate transition metal sulfides[J]. Faraday Discuss, 2008, 140: 19- 31
[9]   JARAMILLO T F, JORGENSEN K P, BONDE J, et al Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J]. Science, 2007, 317 (5834): 100- 102
doi: 10.1126/science.1141483
[10]   MERKI D, VRUBEL H, ROVELLI L, et al Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chemical Science, 2012, 3 (8): 15- 25
[11]   WANG H, TSAI C, KONG D, et al Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution [J]. Nano Research, 2015, 8 (2): 566- 575
doi: 10.1007/s12274-014-0677-7
[12]   HUMMERS W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
[13]   XU J, ZHANG J J, ZHANG W J, et al Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications[J]. Advanced Energy Materials, 2017, 7 (23): 1700571
doi: 10.1002/aenm.v7.23
[14]   YE J, YU Z, CHEN W, et al Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: an enhanced electrochemical hydrogen evolution catalyst[J]. International Journal of Hydrogen Energy, 2016, 41 (28): 49- 61
[15]   SAHOO M, RAMAPRABHU S One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery [J]. Carbon, 2018, 127: 27- 35
[16]   WU L, XU X, ZHAO Y, et al Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution [J]. Applied Surface Science, 2017, 425: 470- 477
doi: 10.1016/j.apsusc.2017.06.223
[17]   WANG D, ZHANG X, SHEN Y, et al Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts [J]. RSC Advances, 2016, 6 (20): 56- 61
[18]   YIN Y, HAN J, ZHANG Y, et al Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138 (25): 7965- 7972
doi: 10.1021/jacs.6b03714
[19]   LEYRAL G, BRILLOUET S, ROUSSEAU J, et al Effect of the presence of ionic liquid during the NiMoS bulk preparation in the transformation of decanoic acid[J]. Applied Catalysis A: General, 2017, 532: 120- 132
doi: 10.1016/j.apcata.2016.12.020
[20]   MA C B, QI X, CHEN B, et al MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction [J]. Nanoscale, 2014, 6 (11): 4- 9
[21]   WANG D Z, PAN Z, WU Z Z, et al Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts [J]. Journal of Power Sources, 2014, 264: 229- 234
doi: 10.1016/j.jpowsour.2014.04.066
[22]   MA L, XU L M, XU X Y, et al Cobalt-doped edge-rich MoS2/nitrogenated graphene composite as an electrocatalyst for hydrogen evolution reaction [J]. Materials Science and Engineering: B, 2016, 212: 30- 38
doi: 10.1016/j.mseb.2016.07.014
[23]   LV X J, SHE G W, ZHOU S X, et al Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts[J]. RSC Advances, 2013, 3 (44): 21231- 21236
doi: 10.1039/c3ra42340a
[24]   YIN X Y, YAN Y, MIAO M, et al Quasi-emulsion confined synthesis of edge-rich ultrathin MoS2 nanosheets/graphene hybrid for enhanced hydrogen evolution [J]. Chemistry: A European Journal, 2018, 24 (3): 556- 560
doi: 10.1002/chem.v24.3
[25]   TANG C, WANG W, SUN A, et al Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution[J]. ACS Catalysis, 2015, 5 (11): 6956- 6963
doi: 10.1021/acscatal.5b01803
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] Shou-jing YAN,Yang-yang WANG,Feng-xia CHI,Xue LUO. Characterization and synthesis of hollow glass microspheres/nano-TiO2 composite material[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 713-719.
[3] Jian-dong JIANG,Jiu-li ZHANG,Rui-zheng NIU,Song-tao WU,Xin QIAO. Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 162-168.
[4] Qi WU,Xiao-hong HUANG,Yan MA,Qun CONG. A template extraction method for composite log[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1557-1561.
[5] Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.
[6] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[7] Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.
[8] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[9] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[10] Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.
[11] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[12] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[13] Hai-yan DONG,You-peng ZHANG,Shao-yuan LI,Hai-long DONG. Wind tunnel simulation on contamination distribution of cantilever composite insulator with booster sheds[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1563-1571.
[14] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[15] Jue WANG,Wen-yu JI,Wang-wang LI. Full-range analysis on fatigue performance of prestressed reactive powder concrete-normal concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 917-924.