Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1382-1386    DOI: 10.3785/j.issn.1008-973X.2011.08.009
    
Fuzzy control of injection pressure of injection molding machines based on a nonlinear function
GUAN Cheng, PENG Hua
Institution of Mechanical Design, Zhejiang University, Hangzhou 310027,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

According to the specialty of injection molding machine with servo motor and constant pump,a nonlinear dynamic model of injection hydraulic system was set up. Based on a nonlinear conic, a new type closed-loop pressure control was proposed to improve the control precision of injection pressure. A method of flow control was presented to create a nonlinear function with the help of the difference of pressure, and a fuzzy control method is used to adjust controller parameter on line to overcome uncertainties of parametric and load of hydraulic system, by which the flow signal was optimized, and the design of the point where the velocity control is switched to pressure control could be avoided. A PI control is combined to realize pressure tracking. The experimental and simulating results show that the proposed method can satisfy the requirement for injection pressure of injection molding machine and has good self-adapting character. The steady state pressure fluctuation is less than 0.1 MPa, which verifies the effective of this method.



Published: 08 September 2011
CLC:  TH 137  
Cite this article:

GUAN Cheng, PENG Hua. Fuzzy control of injection pressure of injection molding machines based on a nonlinear function. J4, 2011, 45(8): 1382-1386.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.08.009     OR     https://www.zjujournals.com/eng/Y2011/V45/I8/1382


基于非线性函数的注塑机注射压力模糊控制

为了提高注塑机注射压力控制精度,根据伺服电动机直接驱动定量液压泵节能型注塑机的特点,建立注射液压系统注射压力的非线性数学模型,提出一种基于非线性二次曲线的模糊控制方法.采用基于压力差控制流量的方法引入一个非线性函数来优化流量信号,该方法无需专门设计速度控制向压力控制切换的切换点.由于液压系统本身的参数和负载模型参数均具有不确定性,采用模糊控制方法在线调节该非线性函数的参数.配合PI控制算法实现对注射压力的精确跟踪控制.仿真和实验结果表明,该方法能够满足注塑机实际工作时对注射压力的控制要求,稳态压力波动小于0.1 MPa,具有良好的跟踪性能.

[1] 权龙,王成宾.伺服电动机定量液压泵驱动的注塑机电液控制系统分析[J].液压气动与密封,2005(4): 16-20.

QUAN Long, WANG Chengbin. Research on the electrohydraulic control system driven by AC servo motor and constant pump used in plastic injection model machine [J].Hydraulics Pneumatics & Seals,2005(4): 16-20.

[2] 彭天好,徐兵,杨华勇.变频液压技术的发展及研究综[J]. 浙江大学学报:工学版,2004,38(2):215-221.

PENG Tianhao,XU Bing, YANG Huayong. Development and research overview on variable frequency hydraulic technology [J].Journal of Zhejiang University: Engineering Science, 2004, 38(2): 215-221.

[3 ] RAADE J W, KAZEROONI H. Analysis and design of a novel hydraulic power source for mobile robots [J]. IEEE Transaction on Automation Science and Engineering, 2005,2(3): 226-232.

[4] HAGGAG S, ALSTROM D, CETINKUNT S, et al. Modeling control and validation of an electrohydraulic steerbywire system for articulated vehicle applications [J]. IEEE/ASME Transactions on Mechatronics,2005,10(6): 688-692.

[5] HAVLICSEK H, ALLEYNE A. Nonlinear control of an electro hydraulic injection molding machine via iterative adaptive learning [J]. Transactions of Mechatronics,1999 (3): 312-323.

[6] 李茜,夏伯锴.注塑机注射速度的模型预测迭代学习控制[J].控制工程2009(7): 429-431.

LI Qian,XIA Bokai. Model prediction iterative learning control of ram velocity for injection molding machines
[J].Control Engineering of China ,2009(7): 429-431.

[7] WANG Youqing, ZHOU Donghua, GAO Furong. Iterative learning model predictive control for multiphase batch processes [J].Journal of Process Control, 2008 (18): 543-557.

[8] HUANG Mingshan. Cavity pressure based grey prediction of the fillingtopacking switchover point for injection molding [J].Journal of Materials Processing Technology, 2007, 183 (2/3): 419-424.

[9] TAN K K, HUANG S N, JIANG X. Adaptive control of ram velocity for the injection molding machine [J]. IEEE Trans. on Control Systems Technology, 2001, 9(4): 663-671.

[10] CHEN WenChin, TAI Peihao, DENG Weijao. A neural networkbased approach for dynamic quality prediction in a plastic injection molding process [J]. Expert Systems with Applications,2008, 35 (3): 43-849.

[11] 王康正,张培仁,赵 松.基于神经网络的注塑机注射速度的迭代学习控制[J].计算机辅助工程2005,(12): 71-75.

WANG Kangzheng, ZHANG Peiren, ZHAO Song. Ram velocity control in plastic injection molding machines with iterative network control [J] Computer Aided Engineering, 2005, (12): 71-75.

[12] 王兴天.注塑技术与注塑机[M].北京:化学工业出版社,2007: 54-55.

[13] 孙玲,肖翔.注塑机注射保压切换控制分析[C]∥中国机械工程学会塑性工程学会生产工程学术委员会议.南昌:[s. n.],2004: 171-175.

SUN Lin, XIAO Xiang. Analysis on injectionholding switchover of injection molding machines.[C]∥Production Engineering Academic Committee Conference of CMES. Nanchang: [s. n.],2004: 171-175.

[14] EDWARDS R, DIAO L Y, THOMAS C L. A Comparison of position, cavity pressure, and ultrasound sensors for switchover control in injection molding [C]∥ANTEC 2003 Conference Proceedings. Nashville: [s. n.], 2003: 586-590.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[7] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[8] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[10] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[11] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[12] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[13] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[14] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[15] HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive[J]. J4, 2011, 45(11): 1927-1933.