Please wait a minute...
J4  2012, Vol. 46 Issue (12): 2268-2273    DOI: 10.3785/j.issn.1008-973X.2012.12.019
    
Design of swing device for crown-block heave compensation system
ZHANG Yan-ting1,2, QU Ying-feng1, LIU Zhen-dong1, MA Jiang-tao1
1. College of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266555, China;
2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A swing device mathematical model was established by the Simulink software system in order to determine the structure parameters of crown-block heave compensation device’s key components. The crown-block, compensating cylinder and rocker arm device were simulated dynamically. The interrelation between the inclined angle of wire line, the force on the crown-block affected by wire line and the crown-block displacement was analyzed. The relationship between the angle of two rocker arm and the force state of compensating cylinder was also investigated. The study shows that the structure parameters, such as the length of the rocker arm device, the fixed hinge point position of the rocker arm device and so on, have large effects on the crown-block’s motion rule, force state and compensating property. The force of compensating cylinder first decreases and then increases along with the angle of two rocker arm increases when the crown-block moves from the lowest position to highest position. The length of the rocker arm device was calculated, and the fixed hinge point position of the rocker arm device and the fixed hinge point position of the compensating cylinder were determined.



Published: 01 December 2012
CLC:  TH 137  
Cite this article:

ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system. J4, 2012, 46(12): 2268-2273.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.12.019     OR     http://www.zjujournals.com/eng/Y2012/V46/I12/2268


天车升沉补偿系统摇摆装置的设计

为了确定天车升沉补偿系统关键部件摇摆装置的结构参数,基于Simulink软件系统,建立摇摆装置的数学模型,对天车、补偿缸和摇臂装置进行了系统动力学数值模拟,分析了摇摆装置钢丝绳倾角、钢丝绳对天车作用力与天车位移之间的相互关系,以及摇臂装置2个摇臂夹角与补偿缸受力状态的关系.研究表明:摇摆装置的摇臂长度、摇臂下臂固定铰链点位置等结构参数对天车的运动规律、受力状态和补偿性能具有较大影响,天车从最低临界位置向最高临界位置运动的过程中,补偿缸受力随两摇臂夹角的增大先减小后增大.计算得到了摇摆装置各摇臂的长度,确定了摇臂下臂固定铰链点的位置参数和补偿缸固定铰链点的位置参数.

[1] 方华灿.海洋钻井船升沉补偿装置的设计[J].石油矿场机械,1976(5): 25-37.
FANG Huacan. Design of the heave compensation device for offshore drilling vessel[J]. Oil Field Equipment, 1976(5): 25-37.
[2] 王海波,王庆丰.水下拖拽升沉补偿系统设计及其内模鲁棒控制[J].机械工程学报,2010,46(8): 128-132.
WANG Haibo, WANG Qingfeng. Design and internal model robust control of underwater towed heave compensation system[J].Journal of Mechanical Engineering, 2010,46(8): 128-132.
[3] XU Qi, ABBOTT PHILLIP A, HALKYARD John. Heave suppressed offore drilling and production platform and method of installation: US,6652192[P].2003-11-25.
[4] SARKER G, MYERS G, WILLIAMS T, et al. Comparison of heave motion compensation systems on scientific ocean drilling ship and their effects on wireline logging data[C]∥ 2006 Offshore Technology Conference. Houston: OTC, P.O., 2006: 1-7.
[5] 陈祖波,吕岩,李志刚,等.钻井钻柱升沉补偿概述[J].石油矿场机械,2011,40(10): 28-32.
CHEN Zubo, LV Yan, LI Zhigang, et al. Review of drilling string heave compensation systems for floating drilling platform[J]. Oil Field Equipment, 2011,40(10): 28-32.
[6] 姜浩,刘衍聪,张彦廷,等.钻柱升沉补偿试验台控制系统设计[J].石油机械,2011,39(10): 5-9.
JIANG Hao, LIU Yancong, ZHANG Yanting, et al. Design of the control system for the drill string heave compensation test bed[J].China Petroleum Machinery, 2011,39(10): 5-9.
[7] 刘少军,曾凤艳,李流军.动力吸振式升沉补偿系统性能仿真[J].控制工程,2011,18(3): 356-359.
LIU Shaojun,ZENG Fengyan,LI Liujun. Control performance simulation research on heave compensation system based on dynamic vibration absorber[J].Control Engineering of China, 2011,18(3): 356-359.
[8] 张彦廷,刘振东,姜浩等.浮式钻井平台升沉补偿系统主动力研究[J].石油矿场机械,2010,39(4): 1-4.
ZHANG Yanting,LIU Zhendong,JIANG Hao, et al. Study on active force of compensation system for floating drilling platform[J]. Oil Field Equipment,2010,39(4): 1-4.
[9] 王海波,王庆丰.拖体被动升沉补偿系统非线性建模及仿真[J].浙江大学学报:工学版,2008,42(9): 1568-1572.
WANG Haibo, WANG Qingfeng. Nonlinear modeling and simulation of towed body passive heave compensation system[J]. Journal of Zhejiang University: Engineering Science, 2008,42(9): 1568-1572.
[10] WANG J, GOSSELIN C M. Static balancing of spatial threedegreeoffreedom parallel mechanism[J].Mechanism and Machine Theory,1999,34: 437-452.
[11] 郑晨升.滑块机构的分类方法及其运动特性分析[J].机械科学与技术,2002,4(7): 569-590.
ZHENG Chensheng. The classification and movement analysis of slider mechanisms[J].Mechanical Science and Technology, 2002,4(7): 569-590.
[12] 李兰,马海荣,王秀玲.平面曲柄滑块(摇杆)机构图解法设计新思路[J].河北工业科技,2001,18(6): 19-20.
LI Lan, MA Hairong, WANG Xiuling. A new design thought to the graphic method of plane crank and slipper (rocker)mechanism[J].Hebei Journal of Industrial Science &Technology, 2001,18(6): 19-20.
[13] 吴明亮,唐伦.基于ADAMS的油菜籽分装机中的曲柄滑块机构的优化设计[J].企业技术开发,2009,28(7): 23-25.
WU Mingliang,TANG Lun. Optimization design on slidercrank mechanism of the rapeseed measure and separate load machine based on ADAMS[J].Technological Development of Enterprise, 2009,28(7): 23-25.
[14] 王建国.基于MATLAB的液压支架四连杆机构优化设计[J].煤矿开采,2010,15(2): 70-72.
WANG Jianguo. Optimized design for fourbar linkage structure of powered support based on MATLAB\
[J\]. Coalmining Technology, 2010,15(2): 70-72.
[15] 漆小敏,喻全余,阚宏林.基于Simulink的偏置式曲柄滑块机构运动仿真[J].安徽工程科技学院学报,2008,23(4): 5-7.
QI Xiaomin, YU Quanyu, KAN Honglin. Kinematic simulation of deflection crank slider mechanism based on simulink[J]. Journal of Anhui University of Technology and Science, 2008,23(4): 5-7.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[7] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[8] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[10] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[11] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[12] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[13] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[14] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. J4, 2011, 45(11): 1934-1940.
[15] HUANG Jia-hai,WEI Jian-hua, QIU Min-xiu. Investigation on the transmission characteristics of hydroviscous drive[J]. J4, 2011, 45(11): 1927-1933.