Please wait a minute...
J4  2010, Vol. 44 Issue (5): 1043-1048    DOI: 10.3785/j.issn.1008-973X.2010.05.035
    
Numerical simulation of unsteady cavitating flow on hydrofoil
HAO Zong-rui, WANG Le-qin, WU Da-zhuan
Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The unsteady cavitating flow around an NACA0015 hydrofoil at an angle of attack of 8°was simulated by a modified RNG kε turbulence model with two different cavitation numbers of 1 and 1.5, and the Reynolds number of 3×105. The structure of unsteady cavitating flow was obtained and so were the flow characteristics of its evolution process. Results show that the reentrant jet plays an important role in the initiation and development process of cavity. The cavity first appears in the leading edge. Then the clockwise vortex developed in the same location moves to downstream along the surface of hydrofoil. The cavity grows up gradually and sheds from the hydrofoil and the shedding locations are different according to the cavitation numbers. The initiation and development process of the cavity accompany the pressure fluctuation. The amplitude and the frequency of pressure fluctuation of cavitating flow with a large cavitation number are obviously greater than that with a smaller caviation number.



Published: 19 March 2012
CLC:     
  O 354  
  TB 126  
Cite this article:

HAO Zong-Rui, WANG Le-Qi, TUN Da-Zhuai. Numerical simulation of unsteady cavitating flow on hydrofoil. J4, 2010, 44(5): 1043-1048.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.05.035     OR     http://www.zjujournals.com/eng/Y2010/V44/I5/1043


水翼非定常空化流场的数值模拟

采用修正的RNG k-ε湍流模型对8°攻角NACA0015水翼的非定常二维空化流场进行数值模拟,分析当空化数分别为1和1.5,对应雷诺数为3×105时绕翼型的非定常流动,得到不同空化数下的非定常空化流场结构及其演化过程的流动特性.计算结果表明,回射流在空泡的形成和发展过程中起着重要的作用.空泡首先出现于水翼的前缘,在其产生的位置形成一个顺时针的漩涡,漩涡沿水翼上表面向下游移动.空泡逐渐长大并脱落,在不同空化数下,空泡脱落的位置不同.空泡形成和发展过程中均伴有压力的波动,大空化数流场的压力波动幅度和频率都明显高于小空化数流场.

[1] 黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991: 13.
[2] HUTTON S P. Studies of cavitation erosion and its relation to cavitation flow patterns[C]∥ International Symposium on Cavitation. Japan: [s.n.], 1986: 2129.
[3] KUBOTA A, KATO H, YAMAGUCHI H. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique [J]. Journal of Fluids Engineering, 1989, 111(2): 204210.
[4] ZHANG Y, GOPALAN S, KATZ J. On the flow structure and turbulence in the closure region of attached cavitation[C]∥ Proceedings of the ASME Fluids Engineering Summer Meeting. Washington DC: [s.n.], 1998: 227238.
[5] 李向宾,刘淑艳,王国玉,等.绕水翼空化的发展及其涡量场特性分析[J].北京理工大学学报,2008, 28(3): 192196.
LI Xiangbin, LIU Shuyan, WANG Guoyu, et al. Vorticity characteristics in cavitating flows around a hydrofoil[J]. Journal of Beijing Institute of Technology, 2008, 28(3): 192196.
[6] KUBOTA A, KATO H, YAMAGUCHI H. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 5996.
[7] SCHNERR G H, SAUER J. Physical and numerical modelling of unsteady cavitation dynamics[C]∥ 4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
[8] SINGHAL A K, LI H, ATAHAVALE M M, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617624.
[9] KELLER A P, ROTT H K. The effect of flow turbulence on cavitation inception[C]∥ Proceedings of the ASME Fluids Engineering Division Summer Meeting. Vancouver: [s.n.], 1997.
[10] DULAR M, BACHERT R, STOFFEL B, et al. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]. European Journal of Mechanics B/Fluids, 2005, 24(4): 522538.
[11] COUTIERDELGOSHA O, FORTESPATELLA R, REBOUD J L. Evaluation of turbulence model influence on the numerical simulations on unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1): 3845.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.