Please wait a minute...
J4  2010, Vol. 44 Issue (5): 998-1002    DOI: 10.3785/j.issn.1008-973X.2010.05.027
    
Preparation of cellulose/tungsten carbide composite beads with
direct dissolution method for expanded bed application
PHOTTRAITHIP Wimonrat, WANG Zhi-yuan, LIN Dong-qiang, YAO Shan-jing
Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The refined cotton was dissolved in N-methylmorpholine-N-oxide (NMMO) solution to prepare the cellulose/NMMO/H2O viscous solutions. Using the reversedphase suspension and the sequential cooling technique, the spherical cellulose composite beads were prepared with cellulose/NMMO/H2O solution and tungsten carbide powder as the inert densified component. Results indicated that the composite beads had regular spherical appearance, the relative high density of 1.6~2.4 g/mL, the porosity of 70%, the mean pore diameter of 25 nm, the specific surface of 60~70 m2/mL, and the suitable logarithmic symmetrical size distribution. The composite beads showed good expansion in the column, with Bo number above 40 and the axial dispersion coefficient at the order of 10-6 magnitude, which can meet the demand of expanded bed adsorption (EBA). Compared with the commercial Streamline adsorbent for EBA, the composite beads can be used at higher flow rate, resulting in the relative higher throughout for EBA process.



Published: 19 March 2012
CLC:     
  TQ 028.8  
Cite this article:

WANG Zhi-Yuan, LIN Dong-Jiang, TAO Shan-Jing. Preparation of cellulose/tungsten carbide composite beads with
direct dissolution method for expanded bed application. J4, 2010, 44(5): 998-1002.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.05.027     OR     http://www.zjujournals.com/eng/Y2010/V44/I5/998


直接溶解法制备纤维素/碳化钨复合扩张床基质

以精制棉为原料,采用N-甲基吗啉-N-氧化物(NMMO)直接溶解纤维素,制备纤维素/NMMO/H2O溶液,添加碳化钨作为惰性增重剂,通过反相悬浮和程序降温制备成纤维素/碳化钨复合微球.结果表明,NMMO溶解法制备的纤维素/碳化钨复合微球球形度好,在介质中的密度达到1.6~2.4 g/mL,孔度约为70%,平均孔径为25 nm,比表面积为60~70 m2/mL,微球粒径具有明显的对数正态分布.扩张床内扩张性能良好,Bo准数大于40,轴向扩散系数处于10-6数量级,床层稳定,可以作为扩张床吸附剂(EBA)的基质.与商业介质Streamline相比,在相同扩张率下,本文制备的扩张床基质可以用于较高的流速,满足扩张床吸附的高处理量要求.

[1] THOEMMES J. Fluidized bed adsorption as a primary recovery step in protein purification[J]. Advance in Biochemical Engineering, 1997, 58: 185230.
[2] ANSPACH F B, CURBELO D, HARTMANN R, et al. Expandedbed chromatography in primary protein purification[J]. Journal of Chromatograph A, 1999, 865(1/2): 129144.
[3] 雷引林,姚善泾,刘坐镇,等.扩张床吸附基质研究进展[J].功能高分子学报,2002, 15(2): 219224.
LEI Yinlin, YAO Shanjing, LIU Zuozhen, et al. Advances in matrices for expanded bed adsorption [J]. Journal of Functional Polymers, 2002, 15(2): 219224.
[4] LEI Y L, LIN D Q, YAO S J, et al. Preparation and characterization of titanium oxidedensified cellulose beads for expanded bed adsorption [J]. Journal of Applied Polymer Science, 2003, 90(10): 28482854.
[5] MIAO Z J, LIN D Q, YAO S J. Preparation and characterization of cellulosestainless steel powder compositeparticles customized for expanded bed application [J]. Industrial and Engineering Chemistry Research, 2005, 44(22): 82188224.
[6] 缪志俊,林东强,雷引林,等.纤维素/不锈钢粉复合扩张床基质的制备[J].浙江大学学报:工学版, 2005,39(3): 457460.
MIAO Zhijun, LIN Dongqiang, LEI Yinlin, et al. Preparation of cellulosestainless steel powder composite matrix for expanded bed adsorption[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(3): 457460.
[7] XIA H F, LIN D Q, YAO S J. Preparation and characterization of macroporous cellulosetungsten carbide composite beads for expanded bed applications [J]. Journal of Chromatography A, 2007, 1175(1): 5562.
[8] BIGANSK O, NAVARD P. Phase diagram of a cellulose solvent: Nmethylmorpholineoxidewater mixtures [J]. Polymer, 44(4): 10351039.
[9] ZHAO H, KWAKA J H, WANGA Y, et al. Interactions between cellulose and NmethylmorpholineNoxide[J]. Carbohydrate Polymers, 67 (1): 97103.
[10] 黄建辉,刘明华,林春香,等.NMMO法制备的球形纤维素珠体的性能研究[J].纤维素科学与技术, 2006, 14(4): 1621.
HUANG Jianhui, LIU Minghua, LIN Chunxiang, et al. Study on the performance of the spherical cellulose beads prepared by NMMO process [J]. Journal of Cellulose Science and Technology, 2006, 14(4): 1621.
[11] 吕昂,张俐娜.纤维素溶剂研究进展[J].高分子学报,2007(10): 937944.
LV Ang, ZHANG Lina. Advance in solvents of cellulose [J]. Acta Polymerica Sinica, 2007 (10): 937944.
[12] LEI Y L, LIN D Q, YAO S J, et al. Physical and hydrodynamic properties of spherical cellulosetitanium dioxide composite matrix for expanded bed adsorption [J]. Chinese Journal of Chemical Engineering, 2003, 11(2): 141145.
[13] LIN D Q, MIAO Z J, YAO S J. Expansion and hydrodynamic properties of cellulosestainless steel powder composite matrix for expanded bed adsorption [J]. Journal of Chromatography A, 2006, 1107(1/2): 265272.
[14] XIA H F, LIN D Q, YAO S J. Chromatographic performance of macroporous cellulosetungsten carbide composite beads as anion exchanger for expanded bed adsorption at high fluid velocity [J]. Journal of Chromatography A, 2007, 1195(1/2): 6066.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.