Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1856-1863    DOI: 10.3785/j.issn.1008-973X.2025.09.009
计算机技术     
基于内蕴旋转对称性的器件瑕疵检测
周涛1(),王鹏飞2,高伟杰2,*()
1. 国网山东省电力公司淄博供电公司,山东 淄博 255000
2. 山东大学 计算机科学与技术学院,山东 青岛 266237
Device defect detection based on intrinsic rotational symmetry
Tao ZHOU1(),Pengfei WANG2,Weijie GAO2,*()
1. Zibo Power Supply Company, State Grid Shandong Electric Power Company, Zibo 255000, China
2. School of Computer Science and Technology, Shandong University, Qingdao 266237, China
 全文: PDF(1442 KB)   HTML
摘要:

针对可变形旋转体工业器件瑕疵检测精度低的问题,提出基于内蕴旋转对称性的新型瑕疵检测算法. 以三维扫描技术重建得到的初始模型作为输入,通过基于内蕴旋转对称性和保真度约束的优化迭代,逐步将初始模型优化至接近理想的无瑕疵标准模型,将标准模型与输入模型比对以获得瑕疵检测结果. 采用内蕴旋转对称性以约束模型,能够兼容对可变形旋转体器件的处理. 引入保真度约束以防止优化过程中模型的过度形变,能够对瑕疵部分进行合理修正,同时防止因平滑过度或其他非物理变形掩盖真实特征. 算法利用网格三角形法向量与旋转轴及重心投影方向向量的共面特性构建约束项,通过L-BFGS优化器求解. 相比基于外蕴旋转特性的方法,内蕴旋转对称性能够处理局部可变形特征,避免误检测. 实验表明本研究算法在旋转体高精度瑕疵检测方面具有较高精度,特别是在处理可变形旋转体工业器件时表现出色.

关键词: 瑕疵检测可变形旋转器件内蕴旋转对称性迭代优化绝缘子    
Abstract:

A novel defect detection algorithm based on intrinsic rotational symmetry was proposed to address the issue of low accuracy in defect detection for deformable rotational industrial devices. The initial model, reconstructed using 3D scanning technology, was used as input. Through an optimization iteration process constrained by intrinsic rotational symmetry and fidelity, the initial model was gradually optimized to approximate an ideal, defect-free standard model. Finally, the defect detection results were obtained by comparing the standard and input models. During the optimization process, intrinsic rotational symmetry was employed to constrain the model, enabling compatibility with deformable rotational industrial devices. Fidelity constraints were introduced to prevent excessive deformation during optimization, allowing for reasonable correction of defective areas while avoiding masking of real features caused by over-smoothing or other non-physical deformations. Constraint terms were constructed by utilizing the coplanarity property of triangle normal vectors with the rotation axis and centroid projection direction vectors, and the solution was obtained using the L-BFGS optimizer. Compared with traditional methods based on extrinsic rotational properties, intrinsic rotational symmetry can handle locally deformable features and avoid false detections. Experiments demonstrated that the proposed algorithm achieved high accuracy in high-precision defect detection for rotational devices, especially for deformable rotational industrial devices.

Key words: defect detection    deformable rotational device    intrinsic rotational symmetry    iterative optimization    insulator
收稿日期: 2024-08-24 出版日期: 2025-08-25
CLC:  TP 399  
通讯作者: 高伟杰     E-mail: 279173916@qq.com;202120691@mail.sdu.edu.cn
作者简介: 周涛(1987—),男,高级电力工程师,本科,从事计算机图形学研究. orcid.org/0009-0005-5585-3531. E-mail:279173916@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周涛
王鹏飞
高伟杰

引用本文:

周涛,王鹏飞,高伟杰. 基于内蕴旋转对称性的器件瑕疵检测[J]. 浙江大学学报(工学版), 2025, 59(9): 1856-1863.

Tao ZHOU,Pengfei WANG,Weijie GAO. Device defect detection based on intrinsic rotational symmetry. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1856-1863.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.009        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1856

图 1  内蕴旋转对称性原理示意图
图 2  模型瑕疵区域与非瑕疵区域的向量共面特征示意图
图 3  绝缘子模型优化前后对比及瑕疵检测结果
图 4  基于外蕴旋转对称性的瑕疵检测结果
图 5  噪声干扰下的模型优化结果
图 6  优化迭代过程中各能量项收敛特性
图 7  大瑕疵区域优化结果
图 8  多种旋转体瑕疵检测示例
1 WANG F L, ZUO B Detection of surface cutting defect on magnet using Fourier image reconstruction[J]. Journal of Central South University, 2016, 23 (5): 1123- 1131
doi: 10.1007/s11771-016-0362-y
2 SI J, KIM S. TFR: texture defect detection with Fourier transform using normal reconstructed template of simple autoencoder [EB/OL]. (2023-07-24) [2024-06-20]. https://doi.org/10.48550/arXiv.2307.04574.
3 ANAND P, SUDHARSAN R M, RAMACHANDRAN V, et al. Steel defect detection using a ResNet-inspired model and Fourier transforms [C]// Proceedings of the 4th International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies. Bhilai: IEEE, 2024: 1–6.
4 HOU Z, PARKER J M. Texture defect detection using support vector machines with adaptive Gabor wavelet features [C]// Proceedings of the 7th IEEE Workshops on Applications of Computer Vision. Breckenridge: IEEE, 2005: 275–280.
5 CHETVERIKOV D, HANBURY A Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002, 35 (10): 2165- 2180
doi: 10.1016/S0031-3203(01)00188-1
6 PENG X, CHEN Y, YU W, et al An online defects inspection method for float glass fabrication based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39 (11): 1180- 1189
7 赵涛, 张思祥, 徐文超, 等 热电池装配缺陷的灰度峰值坐标比对算法[J]. 电子测量与仪器学报, 2020, 34 (7): 133- 140
ZHAO Tao, ZHANG Sixiang, XU Wenchao, et al Research on defects detecting method in thermal battery based on a comparison with coordinates of the peaks in gray histogram[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34 (7): 133- 140
8 SHI Y, CUI L, QI Z, et al Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (12): 3434- 3445
doi: 10.1109/TITS.2016.2552248
9 XIE Y, HU W, XIE S, et al Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15 (2): 565- 579
doi: 10.1007/s12559-022-10061-z
10 WANG Z, WU F, HU Z MSLD: a robust descriptor for line matching[J]. Pattern Recognition, 2009, 42 (5): 941- 953
doi: 10.1016/j.patcog.2008.08.035
11 ZHANG L, KOCH R An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation, 2013, 24 (7): 794- 805
doi: 10.1016/j.jvcir.2013.05.006
12 WU H, LUO Z, SUN F, et al An improvement method for improving the surface defect detection of industrial products based on contour matching algorithms[J]. Sensors, 2024, 24 (12): 3932
doi: 10.3390/s24123932
13 PENG X, CHEN Y, YU W, et al. An online defects inspection method for float glass fabrication based on machine vision [J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(11): 1180–1189.
14 HOU Y, CUYT A, LEE W S, et al. Decomposing textures using exponential analysis [C]// 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 1920–1924.
15 HOCENSKI Z, VASILIC S, HOCENSKI V. Improved canny edge detector in ceramic tiles defect detection [C]// Proceedings of the IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. Paris: IEEE, 2006: 3328–3331.
16 WAKAF Z, JALAB H A. Defect detection based on extreme edge of defective region histogram [J]. Journal of King Saud University: Computer and Information Sciences, 2018, 30(1): 33–40.
17 MAK K L, PENG P, YIU K F C Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27 (10): 1585- 1592
doi: 10.1016/j.imavis.2009.03.007
18 YANG E, LIAO Y, LIU A, et al Detection for fabric defects based on low-rank decomposition[J]. Journal of Textile Research, 2020, 41 (5): 72- 78
19 LI C, LIU C, GAO G, et al Robust low-rank decomposition of multi-channel feature matrices for fabric defect detection[J]. Multimedia Tools and Applications, 2019, 78 (6): 7321- 7339
doi: 10.1007/s11042-018-6483-6
20 TAX D M J, DUIN R P W Support vector data description[J]. Machine Learning, 2004, 54 (1): 45- 66
doi: 10.1023/B:MACH.0000008084.60811.49
21 CHEN X, CHEN J, HAN X, et al A light-weighted CNN model for wafer structural defect detection[J]. IEEE Access, 2020, 8: 24006- 24018
doi: 10.1109/ACCESS.2020.2970461
22 JHA S B, BABICEANU R F Deep CNN-based visual defect detection: survey of current literature[J]. Computers in Industry, 2023, 148: 103911
doi: 10.1016/j.compind.2023.103911
23 ZHOU H, YANG R, HU R, et al ETDNet: efficient transformer-based detection network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2525014
24 TANG Z, TIAN E, WANG Y, et al Nondestructive defect detection in castings by using spatial attention bilinear convolutional neural network[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (1): 82- 89
doi: 10.1109/TII.2020.2985159
25 TABERNIK D, ŠELA S, SKVARČ J, et al Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31 (3): 759- 776
doi: 10.1007/s10845-019-01476-x
26 CHA Y J, CHOI W, BÜYÜKÖZTÜRK O Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32 (5): 361- 378
doi: 10.1111/mice.12263
27 XU X, ZHENG H, GUO Z, et al SDD-CNN: small data-driven convolution neural networks for subtle roller defect inspection[J]. Applied Sciences, 2019, 9 (7): 1364
doi: 10.3390/app9071364
28 TAO X, ZHANG D, WANG Z, et al Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50 (4): 1486- 1498
doi: 10.1109/TSMC.2018.2871750
29 TANG B, SONG Z K, SUN W, et al An end-to-end steel surface defect detection approach via Swin transformer[J]. IET Image Processing, 2023, 17 (5): 1334- 1345
doi: 10.1049/ipr2.12715
30 LI J, SU Z, GENG J, et al Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51 (21): 76- 81
doi: 10.1016/j.ifacol.2018.09.412
31 CHA Y J, CHOI W, SUH G, et al Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33 (9): 731- 747
doi: 10.1111/mice.12334
32 REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
33 ZHANG C, CHANG C C, JAMSHIDI M Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35 (4): 389- 409
doi: 10.1111/mice.12500
34 REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2024-06-20]. https://arxiv.org/abs/1804.02767.
35 CHEN S H, TSAI C C SMD LED chips defect detection using a YOLOv3-dense model[J]. Advanced Engineering Informatics, 2021, 47: 101255
doi: 10.1016/j.aei.2021.101255
36 HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261–2269.
37 XU X, ZHANG G, ZHENG W, et al High-precision detection algorithm for metal workpiece defects based on deep learning[J]. Machines, 2023, 11 (8): 834
doi: 10.3390/machines11080834
[1] 李运堂,张坤,李恒杰,朱文凯,金杰,章聪,王冰清,OPPONGFrancis. 基于改进YOLOv5s网络的绝缘子缺陷检测[J]. 浙江大学学报(工学版), 2024, 58(12): 2469-2478.
[2] 董海燕,张友鹏,李少远,董海龙. 超大伞裙腕臂复合绝缘子积污分布的风洞模拟[J]. 浙江大学学报(工学版), 2019, 53(8): 1563-1571.
[3] 沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.
[4] 沈国辉,袁光辉,楼文娟,孙炳楠. 绝缘子在输电塔线体系动力计算中的作用分析[J]. J4, 2011, 45(11): 1960-1965.
[5] 沈国辉 何运祥 孙炳楠 叶尹 楼文娟 李宏男. 绝缘子断裂对大跨越输电线路的动力效应[J]. J4, 2008, 42(11): 1990-1995.