计算机技术 |
|
|
|
|
基于内蕴旋转对称性的器件瑕疵检测 |
周涛1( ),王鹏飞2,高伟杰2,*( ) |
1. 国网山东省电力公司淄博供电公司,山东 淄博 255000 2. 山东大学 计算机科学与技术学院,山东 青岛 266237 |
|
Device defect detection based on intrinsic rotational symmetry |
Tao ZHOU1( ),Pengfei WANG2,Weijie GAO2,*( ) |
1. Zibo Power Supply Company, State Grid Shandong Electric Power Company, Zibo 255000, China 2. School of Computer Science and Technology, Shandong University, Qingdao 266237, China |
1 |
WANG F L, ZUO B Detection of surface cutting defect on magnet using Fourier image reconstruction[J]. Journal of Central South University, 2016, 23 (5): 1123- 1131
doi: 10.1007/s11771-016-0362-y
|
2 |
SI J, KIM S. TFR: texture defect detection with Fourier transform using normal reconstructed template of simple autoencoder [EB/OL]. (2023-07-24) [2024-06-20]. https://doi.org/10.48550/arXiv.2307.04574.
|
3 |
ANAND P, SUDHARSAN R M, RAMACHANDRAN V, et al. Steel defect detection using a ResNet-inspired model and Fourier transforms [C]// Proceedings of the 4th International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies. Bhilai: IEEE, 2024: 1–6.
|
4 |
HOU Z, PARKER J M. Texture defect detection using support vector machines with adaptive Gabor wavelet features [C]// Proceedings of the 7th IEEE Workshops on Applications of Computer Vision. Breckenridge: IEEE, 2005: 275–280.
|
5 |
CHETVERIKOV D, HANBURY A Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002, 35 (10): 2165- 2180
doi: 10.1016/S0031-3203(01)00188-1
|
6 |
PENG X, CHEN Y, YU W, et al An online defects inspection method for float glass fabrication based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39 (11): 1180- 1189
|
7 |
赵涛, 张思祥, 徐文超, 等 热电池装配缺陷的灰度峰值坐标比对算法[J]. 电子测量与仪器学报, 2020, 34 (7): 133- 140 ZHAO Tao, ZHANG Sixiang, XU Wenchao, et al Research on defects detecting method in thermal battery based on a comparison with coordinates of the peaks in gray histogram[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34 (7): 133- 140
|
8 |
SHI Y, CUI L, QI Z, et al Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (12): 3434- 3445
doi: 10.1109/TITS.2016.2552248
|
9 |
XIE Y, HU W, XIE S, et al Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15 (2): 565- 579
doi: 10.1007/s12559-022-10061-z
|
10 |
WANG Z, WU F, HU Z MSLD: a robust descriptor for line matching[J]. Pattern Recognition, 2009, 42 (5): 941- 953
doi: 10.1016/j.patcog.2008.08.035
|
11 |
ZHANG L, KOCH R An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation, 2013, 24 (7): 794- 805
doi: 10.1016/j.jvcir.2013.05.006
|
12 |
WU H, LUO Z, SUN F, et al An improvement method for improving the surface defect detection of industrial products based on contour matching algorithms[J]. Sensors, 2024, 24 (12): 3932
doi: 10.3390/s24123932
|
13 |
PENG X, CHEN Y, YU W, et al. An online defects inspection method for float glass fabrication based on machine vision [J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(11): 1180–1189.
|
14 |
HOU Y, CUYT A, LEE W S, et al. Decomposing textures using exponential analysis [C]// 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 1920–1924.
|
15 |
HOCENSKI Z, VASILIC S, HOCENSKI V. Improved canny edge detector in ceramic tiles defect detection [C]// Proceedings of the IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. Paris: IEEE, 2006: 3328–3331.
|
16 |
WAKAF Z, JALAB H A. Defect detection based on extreme edge of defective region histogram [J]. Journal of King Saud University: Computer and Information Sciences, 2018, 30(1): 33–40.
|
17 |
MAK K L, PENG P, YIU K F C Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27 (10): 1585- 1592
doi: 10.1016/j.imavis.2009.03.007
|
18 |
YANG E, LIAO Y, LIU A, et al Detection for fabric defects based on low-rank decomposition[J]. Journal of Textile Research, 2020, 41 (5): 72- 78
|
19 |
LI C, LIU C, GAO G, et al Robust low-rank decomposition of multi-channel feature matrices for fabric defect detection[J]. Multimedia Tools and Applications, 2019, 78 (6): 7321- 7339
doi: 10.1007/s11042-018-6483-6
|
20 |
TAX D M J, DUIN R P W Support vector data description[J]. Machine Learning, 2004, 54 (1): 45- 66
doi: 10.1023/B:MACH.0000008084.60811.49
|
21 |
CHEN X, CHEN J, HAN X, et al A light-weighted CNN model for wafer structural defect detection[J]. IEEE Access, 2020, 8: 24006- 24018
doi: 10.1109/ACCESS.2020.2970461
|
22 |
JHA S B, BABICEANU R F Deep CNN-based visual defect detection: survey of current literature[J]. Computers in Industry, 2023, 148: 103911
doi: 10.1016/j.compind.2023.103911
|
23 |
ZHOU H, YANG R, HU R, et al ETDNet: efficient transformer-based detection network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2525014
|
24 |
TANG Z, TIAN E, WANG Y, et al Nondestructive defect detection in castings by using spatial attention bilinear convolutional neural network[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (1): 82- 89
doi: 10.1109/TII.2020.2985159
|
25 |
TABERNIK D, ŠELA S, SKVARČ J, et al Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31 (3): 759- 776
doi: 10.1007/s10845-019-01476-x
|
26 |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32 (5): 361- 378
doi: 10.1111/mice.12263
|
27 |
XU X, ZHENG H, GUO Z, et al SDD-CNN: small data-driven convolution neural networks for subtle roller defect inspection[J]. Applied Sciences, 2019, 9 (7): 1364
doi: 10.3390/app9071364
|
28 |
TAO X, ZHANG D, WANG Z, et al Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50 (4): 1486- 1498
doi: 10.1109/TSMC.2018.2871750
|
29 |
TANG B, SONG Z K, SUN W, et al An end-to-end steel surface defect detection approach via Swin transformer[J]. IET Image Processing, 2023, 17 (5): 1334- 1345
doi: 10.1049/ipr2.12715
|
30 |
LI J, SU Z, GENG J, et al Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51 (21): 76- 81
doi: 10.1016/j.ifacol.2018.09.412
|
31 |
CHA Y J, CHOI W, SUH G, et al Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33 (9): 731- 747
doi: 10.1111/mice.12334
|
32 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
33 |
ZHANG C, CHANG C C, JAMSHIDI M Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35 (4): 389- 409
doi: 10.1111/mice.12500
|
34 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2024-06-20]. https://arxiv.org/abs/1804.02767.
|
35 |
CHEN S H, TSAI C C SMD LED chips defect detection using a YOLOv3-dense model[J]. Advanced Engineering Informatics, 2021, 47: 101255
doi: 10.1016/j.aei.2021.101255
|
36 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261–2269.
|
37 |
XU X, ZHANG G, ZHENG W, et al High-precision detection algorithm for metal workpiece defects based on deep learning[J]. Machines, 2023, 11 (8): 834
doi: 10.3390/machines11080834
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|