计算机技术 |
|
|
|
|
基于改进CycleGAN的水下桥墩裂缝图像生成 |
吕振鸣1( ),董绍江1,*( ),何婧瑶2,杨金龙3,张佳伟1 |
1. 重庆交通大学 机电与车辆工程学院,重庆 400074 2. 重庆交通大学 河流与海洋工程学院,重庆 400074 3. 重庆交通大学 交通运输学院,重庆 400074 |
|
Underwater bridge pier crack image generation based on improved CycleGAN |
Zhenming LV1( ),Shaojiang DONG1,*( ),Jingyao HE2,Jinlong YANG3,Jiawei ZHANG1 |
1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China 2. School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China 3. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China |
引用本文:
吕振鸣,董绍江,何婧瑶,杨金龙,张佳伟. 基于改进CycleGAN的水下桥墩裂缝图像生成[J]. 浙江大学学报(工学版), 2025, 59(9): 1846-1855.
Zhenming LV,Shaojiang DONG,Jingyao HE,Jinlong YANG,Jiawei ZHANG. Underwater bridge pier crack image generation based on improved CycleGAN. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1846-1855.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.008
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1846
|
1 |
LI X, MENG Q, WEI M, et al Identification of underwater structural bridge damage and BIM-based bridge damage management[J]. Applied Sciences, 2023, 13 (3): 1348
doi: 10.3390/app13031348
|
2 |
ORINAITĖ U, KARALIŪTĖ V, PAL M, et al Detecting underwater concrete cracks with machine learning: a clear vision of a murky problem[J]. Applied Sciences, 2023, 13 (12): 7335
doi: 10.3390/app13127335
|
3 |
KOV’ARI K, PETER G Continuous strain monitoring in the rock foundation of a large gravity dam[J]. Rock Mechanics and Rock Engineering, 1983, 16 (3): 157- 171
doi: 10.1007/BF01033277
|
4 |
FAN X, CAO P, SHI P, et al An underwater dam crack image segmentation method based on multi-level adversarial transfer learning[J]. Neurocomputing, 2022, 505: 19- 29
doi: 10.1016/j.neucom.2022.07.036
|
5 |
HUANG B, KANG F, LI X, et al Underwater dam crack image generation based on unsupervised image-to-image translation[J]. Automation in Construction, 2024, 163: 105430
doi: 10.1016/j.autcon.2024.105430
|
6 |
YE X, LUO K, WANG H, et al An advanced AI-based lightweight two-stage underwater structural damage detection model[J]. Advanced Engineering Informatics, 2024, 62: 102553
doi: 10.1016/j.aei.2024.102553
|
7 |
程风雯, 甘进, 李星, 等 基于DCGAN的水下结构物表面缺陷图像生成[J]. 长江科学院院报, 2023, 40 (9): 155- 161 CHENG Fengwen, GAN Jin, LI Xing, et al Image generation for surface defects of underwater structures based on deep convolutional generative adversarial networks[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40 (9): 155- 161
doi: 10.11988/ckyyb.20220421
|
8 |
王桂平, 陈旺桥, 杨建喜, 等 基于迁移学习的桥梁表观病害检测技术研究[J]. 铁道科学与工程学报, 2022, 19 (6): 1638- 1646 WANG Guiping, CHEN Wangqiao, YANG Jianxi, et al A bridge surface distress detection technology based on transfer learning[J]. Journal of Railway Science and Engineering, 2022, 19 (6): 1638- 1646
|
9 |
ZHAO S, SHADABFAR M, ZHANG D, et al Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings[J]. Structural Control and Health Monitoring, 2021, 28 (6): e2732
|
10 |
马金祥, 范新南, 吴志祥, 等 暗通道先验的大坝水下裂缝图像增强算法[J]. 中国图象图形学报, 2016, 21 (12): 1574- 1584 MA Jinxiang, FAN Xinnan, WU Zhixiang, et al Underwater dam crack image enhancement algorithm based on improved dark channel prior[J]. Journal of Image and Graphics, 2016, 21 (12): 1574- 1584
doi: 10.11834/jig.20161202
|
11 |
XIN G, FAN X, SHI P, et al A fine extraction algorithm for image-based surface cracks in underwater dams[J]. Measurement Science and Technology, 2023, 34 (3): 035402
doi: 10.1088/1361-6501/ac9db2
|
12 |
QI Z, LIU D, ZHANG J, et al Micro-concrete crack detection of underwater structures based on convolutional neural network[J]. Machine Vision and Applications, 2022, 33 (5): 74
doi: 10.1007/s00138-022-01327-5
|
13 |
雍子叶, 郭继昌, 李重仪 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报: 工学版, 2021, 55 (3): 555- 562,570 YONG Ziye, GUO Jichang, LI Chongyi Weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 555- 562,570
|
14 |
范新南, 顾丽萍, 巫鹏, 等 一种仿水下生物视觉的大坝裂缝图像增强算法[J]. 光电子 激光, 2014, 25 (2): 372- 377 FAN Xinnan, GU Liping, WU Peng, et al A dam crack image enhancement algorithm based on underwater biological vision[J]. Journal of Optoelectronics Laser, 2014, 25 (2): 372- 377
|
15 |
温佩芝, 陈君谋, 肖雁南, 等 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报: 工学版, 2022, 56 (2): 213- 224 WEN Peizhi, CHEN Junmou, XIAO Yannan, et al Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 213- 224
|
16 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.
|
17 |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel ‘squeeze&excitation’ in fully convolutional networks [C]// Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Cham: Springer, 2018: 421–429.
|
18 |
SONG Y, HE Z, QIAN H, et al Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927- 1941
doi: 10.1109/TIP.2023.3256763
|
19 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10012-10022.
|
20 |
BA J L, KIROS J R, HINTON G E. Layer normalization [EB/OL]. [2024-06-01]. https://arxiv.org/abs/1607.06450.
|
21 |
HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[EB/OL]. [2024-06-01]. https://arxiv.org/abs/1606.08415v5.
|
22 |
WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 1451–1460.
|
23 |
ENGIN D, GENÇ A, KEMAL EKENEL H. Cycle-dehaze: Enhanced cyclegan for single image dehazing [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 825-833.
|
24 |
WANG Y, YAN X, GUAN D, et al Cycle-SNSPGAN: towards real-world image dehazing via cycle spectral normalized soft likelihood estimation patch GAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 20368- 20382
doi: 10.1109/TITS.2022.3170328
|
25 |
WANG Y, YAN X, WANG F L, et al UCL-dehaze: toward real-world image dehazing via unsupervised contrastive learning[J]. IEEE Transactions on Image Processing, 2024, 33: 1361- 1374
doi: 10.1109/TIP.2024.3362153
|
26 |
YANG M, SOWMYA A An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24 (12): 6062- 6071
doi: 10.1109/TIP.2015.2491020
|
27 |
PANETTA K, GAO C, AGAIAN S Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (3): 541- 551
doi: 10.1109/JOE.2015.2469915
|
28 |
YANG X, LI H, YU Y, et al Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33 (12): 1090- 1109
doi: 10.1111/mice.12412
|
29 |
WANG W, YANG Y A color image fusion model by saturation-value total variation[J]. Journal of Computational and Applied Mathematics, 2024, 446: 115832
doi: 10.1016/j.cam.2024.115832
|
30 |
ZHAO Y, LV W, XU S, et al. Detrs beat yolos on real-time object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965-16974.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|