Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 243-251    DOI: 10.3785/j.issn.1008-973X.2023.02.004
计算机技术     
融合图增强和采样策略的图卷积协同过滤模型
张京京(),张兆功*(),许鑫
黑龙江大学 计算机科学与技术学院,黑龙江 哈尔滨 150080
Graph convolution collaborative filtering model combining graph enhancement and sampling strategies
Jing-jing ZHANG(),Zhao-gong ZHANG*(),Xin XU
School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
 全文: PDF(1156 KB)   HTML
摘要:

现有的基于图卷积网络(GCNs)的协同过滤(CF)模型存在两大问题,大多数原始图因存在噪声及数据稀疏问题会严重损害模型性能;对于大型用户项目图来说,传统GCN中的显式消息传递减慢了训练时的收敛速度,削弱了模型的训练效率. 针对上述2点,提出融合图增强和采样策略的图卷积协同过滤模型(EL-GCCF). 图初始化学习模块通过生成2种图结构,综合考虑图中的结构和特征信息,对原始图进行增强,有效缓解了噪声问题. 通过多任务的约束图卷积跳过显式的消息传递,利用辅助采样策略有效缓解训练中的过度平滑问题,提高了模型的训练效率. 在2个真实数据集上的实验结果表明,EL-GCCF模型的性能优于众多主流模型,并且具有更高的训练效率.

关键词: 推荐系统协同过滤图增强图卷积网络图神经网络    
Abstract:

There are two significant problems with existing collaborative filtering (CF) models based on graph convolutional networks (GCNs). Most original graphs have noise and data sparsity problems that can seriously impair the model performance. In addition, for large user project graphs, the explicit message passing in traditional GCNs slows down the convergence speed during training and weakens the training efficiency of the model. A graph convolution collaborative filtering model combing graph enhancement and sampling strategies (EL-GCCF) was proposed to respond to the above two points. In the graph initialization learning module, the structural information and the feature information in the graph were integrated by generating two graph structures. The original graph was enhanced and the noise problem was effectively mitigated. Explicit message passing was skipped because of the multi-task constrained graph convolution. The over-smoothing problem in training was effectively mitigated and the training efficiency of the model was improved by using an auxiliary sampling strategy. Experimental results on two real datasets show that the EL-GCCF model outperforms many mainstream models and has higher training efficiency.

Key words: recommendation system    collaborative filtering    graph enhancement    graph convolutional network    graph neural network
收稿日期: 2022-07-31 出版日期: 2023-02-28
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(61972135)
通讯作者: 张兆功     E-mail: 2201851@s.hlju.edu.cn;2013010@hlju.edu.cn
作者简介: 张京京(1999—),女,硕士生,从事推荐算法研究. orcid.org/0000-0002-9279-7808. E-mail: 2201851@s.hlju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张京京
张兆功
许鑫

引用本文:

张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.

Jing-jing ZHANG,Zhao-gong ZHANG,Xin XU. Graph convolution collaborative filtering model combining graph enhancement and sampling strategies. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 243-251.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.004        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/243

图 1  EL-GCCF整体框架图
图 2  图初始化学习模块
数据集 nu ni nc spa/%
MovieLens-1M 6022 3043 995154 5.431
Amazon-Books 52643 91599 2984108 0.062
表 1  MovieLens-1M和Amazon-Book数据集参数
模型 Amazon-Books MovieLens-1M
Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20
MF-BPR 0.0607 0.0430 0.0956 0.0536 0.1704 0.2044 0.2153 0.2175
NeuMF 0.0507 0.0351 0.0823 0.0447 0.1657 0.1953 0.2106 0.2067
DeepWalk 0.0286 0.02511 0.0346 0.0264 0.1248 0.1025 0.1348 0.1057
Node2Vec 0.0301 0.2936 0.0402 0.0309 0.1347 0.1095 0.1475 0.1186
NGCF 0.0617 0.0427 0.0978 0.0547 0.1846 0.2328 0.2513 0.2511
LightGCN 0.0797 0.0565 0.1206 0.0689 0.1876 0.2314 0.2576 0.2427
LR-GCCF 0.0591 0.0504 0.1135 0.0558 0.1785 0.2051 0.2231 0.2124
EL-GCCF 0.0973 0.0643 0.1363 0.0768 0.1925 0.2636 0.2657 0.2882
Imp/% 64.64 27.58 20.01 37.63 7.84 28.52 19.09 35.69
表 2  EL-GCCF和其他方法在2个数据集上的性能比较
模型 te/s Etrain Ttrain
MF-BPR 31 23 12 min
NeuMF 125 79 2 h 45 min
LightGCN 51 780 11 h 3 min
LR-GCCF 67 165 3 h 5 min
EL-GCCF 36 70 43 min
表 3  EL-GCCF模型与MF模型在Ml-1M数据集上的效率比较
图 3  EL-GCCF及其变体模型在Ml-1M数据集上的性能
模型 Amazon-Books MovieLens-1M
Recall@20 NDCG@20 Recall@20 NDCG@20
EL-GCCF(null) 0.1135 0.0558 0.2231 0.2124
EL-GCCF( $\alpha $) 0.1162 0.0583 0.2390 0.2325
EL-GCCF(β) 0.0942 0.0373 0.2187 0.2037
EL-GCCF(n_s) 0.1278 0.0688 0.2633 0.2742
EL-GCCF 0.1363 0.0768 0.2657 0.2882
表 4  EL-GCCF及其变体模型在2个数据集上的性能
图 4  不同邻居数量对EL-GCCF模型性能的影响
图 5  不同超参数对EL-GCCF模型性能的影响
1 WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 165-174.
2 SUN J, ZHANG Y, GUO W, et al. Neighbor interaction aware graph convolution networks for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an: ACM, 2020: 1289-1298.
3 VERMA V, QU M, KAWAGUCHI K, et al. Graphmix: improved training of gnns for semi-supervised learning [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver : ACM, 2021, 35(11): 10024-10032.
4 HE X, DENG K, WANG X, et al. Lightgcn: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an: ACM, 2020: 639-648.
5 CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: ACM, 2020, 34(1): 27-34.
6 DONG X, THANOU D, RABBAT M, et al Learning graphs from data: a signal representation perspective[J]. IEEE Signal Processing Magazine, 2019, 36 (3): 44- 63
doi: 10.1109/MSP.2018.2887284
7 孔欣欣, 苏本昌, 王宏志, 等 基于标签权重评分的推荐模型及算法研究[J]. 计算机学报, 2017, 40 (6): 1440- 1452
KONG Xin-xin, SU Ben-chang, WANG Hong-zhi, et al Research on recommendation model and algorithm based on tag weight scoring[J]. Journal of Computer Science, 2017, 40 (6): 1440- 1452
doi: 10.11897/SP.J.1016.2017.01440
8 FRANCESCHI L, NIEPERT M, PONTIL M, et al. Learning discrete structures for graph neural networks [C]// International Conference on Machine Learning. Los Angeles: ACM, 2019: 1972-1982.
9 ZHANG Y, PAL S, COATES M, et al. Bayesian graph convolutional neural networks for semi-supervised classification [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: ACM, 2019: 5829-5836.
10 WANG W, LUO J, SHEN C, et al. A graph convolutional matrix completion method for miRNA-disease association prediction [C]// International Conference on Intelligent Computing. Bari: IEEE, 2020: 201-215.
11 YU W, QIN Z. Graph convolutional network for recommendation with low-pass collaborative filters [C]// International Conference on Machine Learning. Vienna: ACM, 2020: 10936-10945.
12 CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// International Conference on Machine Learning. Vienna: ACM, 2020: 1725-1735.
13 YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 974-983.
14 WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks [C]// International Conference on Machine Learning. Los Angeles: ACM, 2019: 6861-6871.
15 ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks [C]// Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2528-2535. .
16 LUO D, CHENG W, YU W, et al. Learning to drop: robust graph neural network via topological denoising [C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Jerusalem: ACM, 2021: 779-787.
17 CHEN Y, WU L. Graph neural networks: graph structure learning [M]// Graph neural networks: foundations, frontiers, and applications. Singapore: Springer, 2022: 297-321.
18 LERCHE L, JANNACH D. Using graded implicit feedback for bayesian personalized ranking [C]// Proceedings of the 8th ACM Conference on Recommender Systems. Silicon Valley: ACM, 2014: 353-356.
19 HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Perth: ACM, 2017: 173-182.
20 PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM, 2014: 701-710.
[1] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[2] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[3] 郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.
[4] 王友卫,童爽,凤丽洲,朱建明,李洋,陈福. 基于图卷积网络的归纳式微博谣言检测新方法[J]. 浙江大学学报(工学版), 2022, 56(5): 956-966.
[5] 郑黄河,黄志球,李伟湋,喻垚慎,王永超. 基于自然近邻与协同过滤的API推荐方法[J]. 浙江大学学报(工学版), 2022, 56(3): 494-502.
[6] 王婷,朱小飞,唐顾. 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报(工学版), 2022, 56(2): 322-328.
[7] 钟帆,柏正尧. 采用动态残差图卷积的3D点云超分辨率[J]. 浙江大学学报(工学版), 2022, 56(11): 2251-2259.
[8] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[9] 李诺,郭斌,刘琰,景瑶,於志文. 神经协同过滤智能商业选址方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1788-1794.
[10] 董立岩,金佳欢,方塬程,王越群,李永丽,孙铭会. 基于非负矩阵分解的Slope One算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1349-1353.
[11] 王红霞,陈健,程艳芬. 采用评论挖掘修正用户评分的改进协同过滤算法[J]. 浙江大学学报(工学版), 2019, 53(3): 522-532.
[12] 厉小军,柳虹,施寒潇,朱柳青,张亚辉. 基于深度学习的课程推荐模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2139-2145.
[13] 陈思,蔡晓东,侯珍珍,李波. 基于非均匀邻居节点采样的聚合式图嵌入方法[J]. 浙江大学学报(工学版), 2019, 53(11): 2163-2167.
[14] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[15] 袁友伟, 余佳, 郑宏升, 王娇娇. 基于新颖性排名和多服务质量的云工作流调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1190-1196.