机械工程 |
|
|
|
|
基于核极限学习机自编码器的转盘轴承寿命状态识别 |
潘裕斌1(),王华1,2,*(),陈捷1,2,洪荣晶1,2 |
1. 南京工业大学 机械与动力工程学院,江苏 南京 211816 2. 江苏省工业装备数字制造及控制技术重点实验室,江苏 南京 211816 |
|
Life condition recognition of slewing bearing based on kernel extreme learning machine based auto-encoder |
Yu-bin PAN1(),Hua WANG1,2,*(),Jie CHEN1,2,Rong-jing HONG1,2 |
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China 2. Jiangsu Key Laboratory of Digital Manufacturing for Industrial Equipment and Control Technology, Nanjing 211816, China |
引用本文:
潘裕斌,王华,陈捷,洪荣晶. 基于核极限学习机自编码器的转盘轴承寿命状态识别[J]. 浙江大学学报(工学版), 2022, 56(9): 1856-1866.
Yu-bin PAN,Hua WANG,Jie CHEN,Rong-jing HONG. Life condition recognition of slewing bearing based on kernel extreme learning machine based auto-encoder. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1856-1866.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.019
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1856
|
1 |
CERRADA M, SÁNCHEZ R V, LI C, et al A review on data-driven fault severity assessment in rolling bearings[J]. Mechanical Systems and Signal Processing, 2018, 99: 169- 196
doi: 10.1016/j.ymssp.2017.06.012
|
2 |
赵祥龙, 陈捷, 洪荣晶, 等 基于Wavelet leader和优化的等距映射算法的回转支承自适应特征提取[J]. 浙江大学学报:工学版, 2019, 53 (11): 2092- 2101 ZHAO Xiang-long, CHEN Jie, HONG Rong-jing, et al Adaptive feature extraction method for slewing bearing based on Wavelet leader and optimized isometric mapping method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (11): 2092- 2101
|
3 |
封杨, 黄筱调, 洪荣晶, 等 基于数据驱动的回转支承性能退化评估方法[J]. 中南大学学报:自然科学版, 2017, 48 (3): 684- 693 FENG Yang, HUANG Xiao-diao, HONG Rong-jing, et al A multi-dimensional data-driven method for large-size slewing bearings performance degradation assessment[J]. Journal of Central South University: Science and Technology, 2017, 48 (3): 684- 693
|
4 |
NAYANA B R GEETHANJALI P. Analysis of statistical time-domain features effectiveness in identification of bearing faults from vibration signal[J]. IEEE Sensors Journal, 2017, 17 (17): 5618- 5625
doi: 10.1109/JSEN.2017.2727638
|
5 |
CAESARENDRA W, KOSASIH P B, TIEU A K, et al Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition[J]. Journal of Mechanical Science and Technology, 2013, 27: 2253- 2262
doi: 10.1007/s12206-013-0608-7
|
6 |
LIU Z, ZHANG L, CARRASCO J Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method[J]. Renewable Energy, 2020, 146: 99- 110
doi: 10.1016/j.renene.2019.06.094
|
7 |
LU C, CHEN J, HONG R, et al Degradation trend estimation of slewing bearing based on LSSVM model[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 353- 366
doi: 10.1016/j.ymssp.2016.02.031
|
8 |
李媛媛, 陈捷, 黄筱调, 等 基于改进模糊C均值的回转支承寿命状态识别[J]. 计算机集成制造系统, 2018, 24 (11): 2751- 2758 LI Yuan-yuan, CHEN Jie, HUANG Xiao-diao, et al Life state recognition of slewing bearing based on improved fuzzy C-means[J]. Computer Integrated Manufacturing Systems, 2018, 24 (11): 2751- 2758
doi: 10.13196/j.cims.2018.11.010
|
9 |
付文博, 孙涛, 梁藉, 等 深度学习原理及应用综述[J]. 计算机科学, 2018, 45 (6A): 11- 15 FU Wen-bo, SUN Tao, LIANG Ji, at al Review of principle and application of deep learning[J]. Computer Science, 2018, 45 (6A): 11- 15
doi: 10.11896/j.issn.1002-137X.2018.Z6.002
|
10 |
KASUN L L C, ZHOU H, HUANG G B Representational learning with ELMs for big data[J]. IEEE Intelligent Systems, 2013, 28 (6): 31- 34
|
11 |
YU W, ZHUANG F, HE Q, et al Learning deep representations via extreme learning machines[J]. Neurocomputing, 2015, 149: 308- 315
doi: 10.1016/j.neucom.2014.03.077
|
12 |
ZHANG N, DING S, SHI Z Denoising Laplacian multi-layer extreme learning machine[J]. Neurocomputing, 2016, 171: 1066- 1074
doi: 10.1016/j.neucom.2015.07.058
|
13 |
SUN K, ZHANG J, ZHANG C, et al Generalized extreme learning machine autoencoder and a new deep neural network[J]. Neurocomputing, 2017, 230: 374- 381
doi: 10.1016/j.neucom.2016.12.027
|
14 |
桑发文. 深度核极限学习机和相似性LSSVM时间序列预测模型研究[D]. 兰州: 兰州大学, 2019: 18. Sang Fa-wen. Research on time series prediction model of deep kernel extreme learning machine and LSSVM based on similarity [D]. Lanzhou: Lanzhou University, 2019: 18.
|
15 |
邓万宇, 郑庆华, 陈琳, 等 神经网络极速学习方法研究[J]. 计算机学报, 2010, 33 (2): 279- 287 DENG Wan-yu, ZHENG Qing-hua, CHEN Lin, et al Research on extreme learning of neural networks[J]. Chinese Journal of Computers, 2010, 33 (2): 279- 287
doi: 10.3724/SP.J.1016.2010.00279
|
16 |
HUANG G B An insight into extreme learning machines: Random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6: 376- 390
doi: 10.1007/s12559-014-9255-2
|
17 |
商强, 林赐云, 杨兆升, 等 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报:工学版, 2017, 51 (7): 1339- 1346 SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, et al Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of Zhejiang University:Engineering Science, 2017, 51 (7): 1339- 1346
|
18 |
胡爱军, 张军华, 刘随贤, 等 滚动轴承多工况故障的特征自动选择核极限学习机智能识别方法[J]. 振动与冲击, 2020, 39 (23): 182- 189 HU Ai-jun, ZHANG Jun-hua, LIU Sui-xian, et al Intelligent identification method using kernel extreme learning machine for rolling bearing multi-working condition multi-feature automatic selection[J]. Journal of Vibration and Shock, 2020, 39 (23): 182- 189
|
19 |
SCHÖLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization and beyond [M]. Cambridge: MIT Press, 2002.
|
20 |
MIRJALILI S Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228- 249
doi: 10.1016/j.knosys.2015.07.006
|
21 |
李志明, 莫愿斌, 张森 一种新颖的群智能算法: 飞蛾扑火优化算法[J]. 电脑知识与技术, 2016, 12 (31): 172- 176 LI Zhi-ming, MO Yuan-bin, ZHANG Sen A novel swarm intelligence optimization algorithm: moth-flame optimization algorithm[J]. Computer Knowledge and Technology, 2016, 12 (31): 172- 176
|
22 |
CHENG Y, ZHAO D, WANG Y, et al Multi-label learning with kernel extreme learning machine autoencoder[J]. Knowledge-Based Systems, 2019, 178: 1- 10
doi: 10.1016/j.knosys.2019.04.002
|
23 |
郭建华, 杨海东 基于支持向量免疫集成预测的电信网络性能监控[J]. 中南大学学报:自然科学版, 2012, 43 (3): 1020- 1026 GUO Jian-hua, YANG Hai-dong Telecom networks performance monitoring based on artificial immune support vector regression[J]. Journal of Central South University: Science and Technology, 2012, 43 (3): 1020- 1026
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|