Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1485-1494    DOI: 10.3785/j.issn.1008-973X.2022.08.002
土木与交通工程     
基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证
刘夏临1(),张晟斌1,陈佺2,舒恒1,刘尚各3
1. 中交第二公路勘察设计研究院有限公司,湖北 武汉 430056
2. 中国科学院 武汉岩土力学研究所,湖北 武汉 430071
3. 中国葛洲坝集团国际工程有限公司,北京 100025
Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D
Xia-lin LIU1(),Sheng-bin ZHANG1,Quan CHEN2,Heng SHU1,Shang-ge LIU3
1. CCCC Second Highway Consultants Limited Company, Wuhan 430056, China
2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. China GEZHOUBA Group International Engineering Co. Ltd, Beijing 100025
 全文: PDF(1589 KB)   HTML
摘要:

传统、新型岩土工程问题诸如压缩空气含水层储能、充气截排水技术、二氧化碳地质封存、油气地下储备工程等均涉及气水两相流与应力耦合. 针对这一工程实际,根据非饱和土气水两相渗流-应力弱耦合理论,开发了基于TOUGH2与FLAC3D的气水两相渗流-应力耦合计算搭接程序. 该计算程序能够较为真实地模拟气水两相渗流问题,能够探讨流动过程中气水的相互作用及其对过程的影响. 程序考虑了气水两相渗流与土体骨架变形直接的相互作用,反映了这一过程中孔隙度、渗透率、毛管压力和土体物理力学参数的变化,实现了更为完善的气水两相渗流与应力弱耦合分析. 通过与经典的排水试验和模型试验对比,验证了该程序可以较为准确地模拟气水两相流-应力之间的相互作用.

关键词: 非饱和土气水两相流流固耦合弱耦合TOUGH2-FLAC3D    
Abstract:

Traditional and new geotechnical engineering problems such as compressed air energy storage, intercepting water with compressed air, carbon dioxide sequestration and oil and gas underground reserve project are all involving air-water two-phase flow and stress coupling problems. For this engineering reality, based on the weak coupling theory of gas-water two-phase seepage and stress in unsaturated soil, a air-water two-phase percolation-stress coupling calculation program based on coupled TOUGH2 and FLAC3D was developed. The calculation program can simulate real air-water two phase flow, and can investigate the gas-water interaction of seepage process. The calculation program considers the direct interaction between gas-water two-phase seepage and soil skeleton deformation, reflects the process of porosity, permeability, capillary pressure and the change of soil physical and mechanical parameters, and achieve a more perfect gas-water two-phase seepage-stress coupling analysis. Furthermore, by comparing with classical drainage test and model test, it is verified that the program can accurately simulate the gas-water two-phase flow-stress interaction.

Key words: unsaturated soil    air-water two-phase flow    fluid-structure interaction    weak coupling    TOUGH2-FLAC3D
收稿日期: 2021-07-28 出版日期: 2022-08-30
CLC:  TU 443  
基金资助: 新疆维吾尔自治区重大科技专项(2020A03003, 2020A03003-1);中交集团重点专项(2020-ZJKJ-ZDZX01);中国博士后科学基金课题(2022M712978)
作者简介: 刘夏临(1986—),男,博士,高级工程师,从事隧道与地下空间方面的设计与科研工作. orcid.org/0000-0003-3657-747X. E-mail: 745786066@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘夏临
张晟斌
陈佺
舒恒
刘尚各

引用本文:

刘夏临,张晟斌,陈佺,舒恒,刘尚各. 基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证[J]. 浙江大学学报(工学版), 2022, 56(8): 1485-1494.

Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU. Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1485-1494.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.002        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1485

图 1  TOUGH2-FLAC3D耦合计算框架示意图
图 2  TOUGH2-FLAC3D耦合程序结构图
图 3  TOUGH2和FLAC3D网格转换示意图
图 4  TOUGH2和FLAC3D耦合计算流程
图 5  TOUGH2和FLAC3D迭代计算流程
图 6  Liakopoulos排水实验模型示意图
变量 单位 数值
E MPa 1.3
$ \nu $ ? 0.4
$ \rho $ kg/m3 2 850
$ \varphi $ ? 0.297 5
$ {p}_{\mathrm{a}\mathrm{t}\mathrm{m}} $ Pa 1.013×105
$ k $ m2 4.5×10?13
表 1  排水试验土力学参数
图 7  不同高度处孔隙水压力水头随时间变化结果
图 8  沿高度方向不同时刻孔隙水压力水头
图 9  端口流速随时间的变化
图 10  边坡试验模型示意图
图 11  张力计埋设示意图
变量 单位 数值
${\gamma }_{{\rm{d}}}$ kN/m3 14.81
${G}_{{\rm{s}}}$ ? 2.70
c kPa 0
$\mathrm{\phi }_{\rm{e}}$ ° 34.3
${k}_{{\rm{sat}}}$ m/s 3.32×10?5
α m?1 3.631
n ? 2.408
${\varphi }_{ {\rm{s} } }$ ? 0.444
${\varphi }_{ {\rm{r} } }$ ? 0.048
表 2  模型试验土力学参数
图 12  模型试验结果与本研究模拟结果对比图
1 KING F H Contributions to our knowledge of the aeration of soils[J]. Science, 1905, 22 (564): 495- 499
doi: 10.1126/science.22.564.495
2 RICHARDS L A Capillaiy conduction of liquids through porous mediums[J]. Physics, 1931, 1 (5): 318- 333
doi: 10.1063/1.1745010
3 CELIA M A, BINNING P A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resources Research, 1992, 28 (10): 2819- 2828
doi: 10.1029/92WR01488
4 黄润秋, 戚国庆 非饱和渗流基质吸力对边坡稳定性的影响[J]. 工程地质学报, 2002, (4): 343- 348
HUANG Run-qiu, QI Guo-qing The effect of unsaturated soil suction on slope stability[J]. Journal of Engineering Geology, 2002, (4): 343- 348
doi: 10.3969/j.issn.1004-9665.2002.04.002
5 CAI F, UGAI K Numerical analysis of rainfall effects on slope stability[J]. International Journal of Geomechanics, 2004, 4 (2): 69- 78
doi: 10.1061/(ASCE)1532-3641(2004)4:2(69)
6 荣冠, 张伟, 周创兵 降雨入渗条件下边坡岩体饱和非饱和渗流计算[J]. 岩土力学, 2005, (10): 24- 29
RONG Guan, ZHANG Wei, ZHOU Chuang-bing Numerical analysis of saturated-unsaturated seepage problem of rock slope under rainfall infiltration[J]. Rock and Soil Mechanics, 2005, (10): 24- 29
doi: 10.3969/j.issn.1000-7598.2005.10.005
7 孙冬梅, 朱岳明, 张明进 非饱和带水-气二相流数值模拟研究[J]. 岩土工程学报, 2007, 29 (4): 560- 565
SUN Dong-mei, ZHU Yue-ming, ZHANG Ming-jin Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (4): 560- 565
8 BORJA R I, WHITE J A. Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration [J]. Acta Geotechnica. 2010, 5: 1–14.
9 BORJA R I, WHITE J A, LIU X, et al Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (2): 236- 248
doi: 10.1002/nag.1021
10 彭胜, 陈家军, 王金生, 等 非饱和带水气二相流实验研究[J]. 土壤学报, 2002, 39 (4): 505- 511
PENG Sheng, CHEN Jia-jun, WANG Jin-sheng, et al Two-phase flow in soil vadose zone[J]. Acta Pedologica Sinica, 2002, 39 (4): 505- 511
11 RUTQVIST J, WU Y S, TSANG C F, et al A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Science, 2002, 39: 429- 442
doi: 10.1016/S1365-1609(02)00022-9
12 GOSAVI S, SWENSON D. Architecture for a coupled code for multiphase fluid flow, heat transfer and deformation in porous rock [C]// Proceedings of the 30th Workshop on Geothermal Reservoir Engineering Stanford University. Palo Alto: Stanford, 2005.
13 HURWITZ S, CHRISTIANSEN L B, HSIEH P A. Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(BO2206): 1–16 .
14 TARON J, ELSWORTH D, MIN K B Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media[J]. International Journal of Rock Mechanics and Mining Science, 2009, 46: 842- 854
doi: 10.1016/j.ijrmms.2009.01.008
15 ROHMER J, SEYEDI D M Coupled large scale hydromechanical modelling for caprock failure risk assessment of CO2 storage in deep saline aquifers [J]. Oil and Gas Science and Technology, 2010, 65 (3): 485- 502
doi: 10.2516/ogst/2010006
16 KIM J, MORIDIS G Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems[J]. Computers and Geosciences, 2013, 60: 184- 198
doi: 10.1016/j.cageo.2013.04.023
17 PAN P Z, RUTQVIST J, FENG X T, et al Modeling of caprock discontinuous fracturing during CO2 injection into a deep brine aquifer [J]. International Journal of Greenhouse Gas Control, 2013, 19: 559- 575
doi: 10.1016/j.ijggc.2013.10.016
18 LEE J, MIN K B, RUTQVIST J. TOUGH-UDEC simulator for the coupled multiphase fluid flow, heat transfer, and deformation in fractured porous media [C]// 13th ISRM International Congress of Rock Mechanics. Quebec: OnePetro, 2015.
19 LEI H, XU T, JIN G TOUGH2Biot: a simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: application to CO2 geological storage and geothermal development [J]. Computers and Geosciences, 2015, 77 (C): 8- 19
20 PARK J W, PARK E S, LEE C DECOVALEX-2019 Task B fault reactivation modeling using coupled TOUGH2 and FLAC3D interface model: DECOVALEX-2019 task B[J]. Tunnel and Underground Space, 2020, 30 (4): 335- 358
21 AN C, HAN Y, LIU H H, et al Development and verification of an enhanced equation of state in TOUGH2[J]. Journal of Verification, Validation and Uncertainty Quantification, 2021, 6 (2): 021004
doi: 10.1115/1.4050529
22 TOUMA J, VAUCLIN M Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1 (1): 27- 55
doi: 10.1007/BF01036524
23 PRUNTY L, BELL J Infiltration rate vs. gas composition and pressure in soil columns[J]. Soil Science Society of America Journal, 2007, 71 (5): 1473- 1475
doi: 10.2136/sssaj2007.0072N
24 SUN D M, ZANG Y G, SEMPRICH S Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability[J]. Transport in Porous Media, 2015, 107 (3): 821- 841
doi: 10.1007/s11242-015-0469-x
25 PRUESS K The TOUGH codes: a family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3 (3): 738- 746
26 DETOURNAY C, HART R. FLAC and numerical modeling in geomechanics [C]// Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics. Minneapolis: Balkema, 1999.
27 COUSSY O. Mechanics of porous continua [M]// New York: Wiley, 1995.
28 BARY B. Coupled hydro-mechanical and damage model for concrete as an unsaturated porous medium [C]// Proceedings of the 15th ASCE Engineering Mechanical Conference. New York: Columbia University, 2002: 1-8.
29 CHAPUIS R P, AUBERTIN M On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Revue Canadienne De Géotechnique, 2003, 40 (3): 616- 628
30 LEVERETT M C Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142 (1): 152- 169
doi: 10.2118/941152-G
31 LIAKOPOULOS A C. Transient flow through unsaturated porous media [D]// Berkeley: University of California, Berkeley, 1965.
32 LEWIS R W, SCHREFLER B A. The finite element method in the deformation and consolidation of porous media [M]// New York: John Wiley and Sons, 1987.
33 SCHREFLER B A, ZHAN X Y A fully coupled model for water flow and airflow in deformable porous media[J]. Water Resources Research, 1993, 29 (1): 155- 167
doi: 10.1029/92WR01737
34 GAWIN D, BAGGIO P, SCHREFLER B A Coupled heat, water and gas flow in deformable porous media[J]. International Journal for Numerical Methods in Fluids, 1995, 20 (8/9): 969- 987
35 GAWIN D, SCHREFLER B A, GALINDO M Thermo-hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13 (7): 113- 143
doi: 10.1108/02644409610151584
36 SCHREFLER B A, SCOTTA R A fully coupled dynamic model for two-phase fluid flow in deformable porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 (24/25): 3223- 3246
37 EHLERS W, GRAF T, AMMANN M Deformation and localization analysis of partially saturated soil[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (27–29): 2885- 2910
doi: 10.1016/j.cma.2003.09.026
38 NAGEL F, MESCHKE G An elasto-plastic three phase model for partially saturated soil for the finite element simulation of compressed air support in tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34 (6): 605- 625
doi: 10.1002/nag.828
39 HU R, CHEN Y F, ZHOU C B Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration[J]. Science China Technological Sciences, 2011, 54 (10): 2561- 2575
doi: 10.1007/s11431-011-4504-z
40 BROOKS R H, COREY A T Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92 (2): 61- 88
doi: 10.1061/JRCEA4.0000425
41 林鸿州. 降雨诱发土质边坡失稳的试验与数值分析研究[D]. 北京: 清华大学, 2007.
LIN Hong-zhou. The study on the mechanism and numerical analysis of rainfall-induced soil slope failure [D]// Beijing: Tsinghua University, 2007.
[1] 喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.
[2] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[3] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[4] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[5] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[6] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[7] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.
[8] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[9] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[12] 刘震涛, 陈思南, 黄瑞, 尹旭, 俞小莉, 魏志明, 张全中. 高功率密度柴油机气缸盖热负荷分析与优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1544-1552.
[13] 张焕宇,郝志勇,郑旭. 柴油机冷却系统散热性能优化设计[J]. J4, 2014, 48(1): 70-75.
[14] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[15] 杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.