Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1694-1704    DOI: 10.3785/j.issn.1008-973X.2021.09.011
土木工程、水利工程     
横波钢板混凝土剪力墙震损修复及抗侧刚度分析
王威(),宋鸿来,权超超,李昱,甄国凯,赵昊田
西安建筑科技大学 土木工程学院,陕西 西安 710055
Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall
Wei WANG(),Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
 全文: PDF(1583 KB)   HTML
摘要:

为了研究震损横波钢板剪力墙构件快速恢复功能的可行性,设计横波钢板混凝土组合剪力墙(CSPCW). 施加一定的初始损伤后,对墙趾受损部位进行修复改造使CSPCW成为带阻尼器钢板混凝土组合剪力墙(RCSPCW),并进行拟静力加载. 为了验证阻尼器的可更换性,在RCSPCW层间位移角达1.25%时,更换阻尼器后再次对试件进行拟静力加载. 试验结果表明:RCSPCW能够将损伤集中在阻尼器上,提升剪力墙延性及耗能能力. 第二次更换阻尼器试件的滞回曲线比第一次更换阻尼器的更饱满,证明罕遇地震下更换阻尼器的可行性. 采用ABAQUS对RCSPCW进行抗侧刚度数值拓展分析,发现剪跨比影响最大,体积含钢率影响最小.

关键词: 波形钢板组合剪力墙震损修复可更换阻尼器抗侧刚度数值分析    
Abstract:

A shear horizontal corrugated steel plate concrete composite shear wall (CSPCW) was designed, in order to study the feasibility of rapid recovery of damaged corrugated steel plate concrete composite shear wall. First, a certain initial damage was applied to the CSPCW, then the damaged part of the wall toe was repaired and reformed to become a renewable corrugated steel plate composite shear wall (RCSPCW), and quasi-static loading was carried out. In order to verify the replaceable of the damper, the specimen was subjected to quasi-static loading again after replacing the damper when the interlayer displacement angle of RCSPCW reached 1.25%. Test results show that RCSPCW can concentrate the damage on the damper and improve the ductility and energy dissipation capacity of the shear wall. Moreover, the hysteretic curve of the specimen after the second damper replacement was fuller than that of the first damper replacement, which proves the feasibility of replacing the damper under rare earthquakes. ABAQUS was used to carry out numerical expansion analysis on the lateral stiffness of RCSPCW. It is found that the shear span ratio has the greatest influence and the volume steel content has the smallest influence.

Key words: corrugated steel plate    composite shear wall    earthquake damage repair    replaceable damper    lateral stiffness    numerical analysis
收稿日期: 2020-10-08 出版日期: 2021-10-20
CLC:  TU 398.2  
基金资助: 国家自然科学基金资助项目(51578449,51878548);陕西省自然科学基础研究计划资助项目(2018JZ5013)
作者简介: 王威(1972—),男,教授,博士,从事高层结构抗震设计研究. orcid.org/0000-0002-6989-6234. E-mail: wangwgh1972@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王威
宋鸿来
权超超
李昱
甄国凯
赵昊田

引用本文:

王威,宋鸿来,权超超,李昱,甄国凯,赵昊田. 横波钢板混凝土剪力墙震损修复及抗侧刚度分析[J]. 浙江大学学报(工学版), 2021, 55(9): 1694-1704.

Wei WANG,Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO. Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1694-1704.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.011        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1694

材料 Es/105 MPa Fy /MPa Fu /MPa
8钢筋 2.06 313 450
16钢筋 2.00 420 550
Q235钢板 2.09 315 470
表 1  试件钢材的力学性能
图 1  剪力墙尺寸及构造
图 2  可更换阻尼器尺寸及构造
图 3  阻尼器工作机理
图 4  试件加载装置
图 5  试件加载制度
图 6  可更换阻尼器与试件的连接示意图
图 7  3个试验阶段的试件破坏形态
图 8  试件的滞回曲线
图 9  试件的骨架曲线对比
图 10  试件的刚度退化对比
试件 Fcr/mm $\varDelta $cr/mm Fy/kN $\varDelta $y/mm FP/kN $\varDelta $p/mm Fu/kN $\varDelta $u/mm μ
CSPCW-H0 +250 +8.102 +5410.420 +10.24 +6010.85 +10.61 / / /
CSPCW-H0 ?250 ?5.410 ?544.160 ?18.68 ?647.52 ?16.50 / / /
RCSPCW-H1 +150 +8.105 +821.160 +14.00 / / / / /
RCSPCW-H1 ?150 ?5.180 ?812.200 ?14.54 / / / / /
RCSPCW-H2 / / +826.101 +18.50 +488.50 +86.17 +8100.62 +48.88 8.21
RCSPCW-H2 / / ?806.108 ?18.84 ?481.16 ?80.58 ?866.41 ?810.65 2.87
表 2  特征点的荷载和位移
图 11  试件的累积耗能能力比较
图 12  试件模型屈曲模态
图 13  RCSPCW-H2的试验和模拟滞回曲线对比
$F'_{\rm{p}} $/kN Fp/kN e/%
+431.78 +433.5 0.40
?431.78 ?431.16 0.14
表 3  RCSPCW-H2峰值载荷的试验和模拟结果对比
图 14  阻尼器波形钢板简化受力模型
ρ/% k'/% k/%
n=0.1,λ=1.5 n=0.1,λ=2.0 n=0.1,λ=2.5 n=0.2,λ=1.5 n=0.2,λ=2.0 n=0.2,λ=2.5 n=0.3,λ=1.5 n=0.3,λ=2.0 n=0.3,λ=2.5
2.28 6.63 11.59 12.79 14.09 15.22 17.39 20.01 17.45 19.15 21.00
2.28 9.89 12.81 14.11 15.52 16.52 19.20 21.98 19.23 21.08 23.09
2.28 13.20 14.14 15.55 17.09 17.31 20.97 23.77 21.17 23.19 25.39
3.05 6.63 12.37 13.63 15.00 16.30 19.94 23.82 18.57 20.37 22.32
3.05 9.89 13.65 15.03 16.52 17.79 22.11 26.29 20.46 22.42 24.54
3.05 13.20 15.06 16.56 18.18 18.73 24.14 28.33 22.52 24.66 26.98
3.81 6.63 13.38 14.73 16.20 17.29 22.91 29.06 20.27 22.21 24.32
3.81 9.89 14.77 16.24 17.83 18.72 25.31 31.56 22.31 24.43 26.73
3.81 13.20 16.28 17.89 19.62 19.68 27.07 33.87 24.56 26.87 29.37
表 4  不同参数下剪力墙的有效抗侧刚度比
图 15  修复后剪力墙影响参数相关性分析
1 RAHIMIAN A Lateral stiffness of concrete shear walls for tall buildings[J]. ACI Structural Journal, 2011, 108 (6): 755- 765
2 NEUENHOFER A Lateral stiffness of shear walls with openings[J]. Journal of Structural Engineering, 2006, 132 (11): 1846- 1851
doi: 10.1061/(ASCE)0733-9445(2006)132:11(1846)
3 WELT T S, MASSONE L M, LAFAVE J M, et al Confinement behavior of rectangular reinforced concrete prisms simulating wall boundary elements[J]. Journal of Structural Engineering, 2017, 143 (4): 04016204
doi: 10.1061/(ASCE)ST.1943-541X.0001682
4 王威, 张龙旭, 苏三庆, 等 波形钢板−混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (10): 75- 84
WANG Wei, ZHANG Long-xu, SU San-qing, et al Experimental research on seismic behavior of corrugated sheet plate-concrete composite shear walls[J]. Journal of Building Structures, 2018, 39 (10): 75- 84
5 JÜNEMANN R, DE LA LLERA J C, HUBE M A, et al A statistical analysis of reinforced concrete wall buildings damaged during the 2010, Chile earthquake[J]. Engineering Structures, 2015, 82: 168- 185
doi: 10.1016/j.engstruct.2014.10.014
6 WALLACE J W, MASSONE L M, BONELLI P, et al Damage and implications for seismic design of RC structural wall buildings[J]. Earthquake Spectra, 2012, 28: 281- 299
doi: 10.1193/1.4000047
7 TELLEEN K, MAFFEI J, HEINTZ J. Practical lessons for concrete wall design, based on studies of the 2010 Chile earthquake [C]// 15th World Conference on Earthquake Engineering. Lisbon: [s.n.], 2012: 24-28.
8 徐培福, 黄吉锋, 陈富盛 近50年剪力墙结构震害及其对抗震设计的启示[J]. 建筑结构学报, 2017, 38 (3): 1- 13
XU Pei-fu, HUANG Ji-feng, CHEN Fu-sheng Earthquake damages to shear wall structure in last fifty years and seismic design enlightenment[J]. Journal of Building Structures, 2017, 38 (3): 1- 13
9 DE MATTEIS G, FORMISANO A, MAZZOLANI F M An innovative methodology for seismic retrofitting of existing RC buildings by metal shear panels[J]. Earthquake engineering and structural dynamics, 2009, 38 (1): 61- 78
doi: 10.1002/eqe.841
10 吕西林, 陈云, 毛苑君 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报: 自然科学版, 2011, 39 (7): 941- 948
LV Xi-lin, CHEN Yun, MAO Yuan-jun New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University: Natural Science, 2011, 39 (7): 941- 948
11 ANTONIADES K K, SALONIKIOS T N, KAPPOS A J Cyclic tests on seismically damaged reinforced concrete walls strengthened using fiber-reinforced polymer reinforcement[J]. ACI Structural Journal, 2003, 100 (4): 510- 518
12 LI B, LIM C L Tests on seismically damaged reinforced concrete structural walls repaired using fiber-reinforced polymers[J]. Journal of Composites for Construction, 2010, 14 (5): 597- 608
doi: 10.1061/(ASCE)CC.1943-5614.0000110
13 陈再现, 孙凯林, 栾文芬, 等 低强度砖砌体粘钢-聚合物砂浆加固抗震性能试验[J]. 建筑结构学报, 2018, 39 (12): 153- 158
CHEN Zai-xian, SUN Kai-lin, PEI Wen-fen, et al Experimental study on strengthening method of low strength brick masonry using steel plate and polymer mortar[J]. Journal of Building Structures, 2018, 39 (12): 153- 158
14 PRETI M, MEDA A RC structural wall with unbonded tendons strengthened with high-performance fiber-reinforced concrete[J]. Materials and Structures, 2015, 48 (1-2): 249- 260
doi: 10.1617/s11527-013-0180-8
15 张远淼, 余江滔, 陆洲导, 等 ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32 (1): 72- 80
ZHANG Yuan-miao, YU Jiang-tao, LU Zhou-dao, et al Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC[J]. Engineering Mechanics, 2015, 32 (1): 72- 80
16 WANG W, WANG Y, LU Z Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall[J]. Engineering Structures, 2018, 160: 281- 292
17 WANG W, SONG J, HOU M, et al Experimental study and numerical simulation of replaceable corrugated steel plate-concrete composite shear walls[J]. Soil Dynamics and Earthquake Engineering, 2019, 127: 105827
doi: 10.1016/j.soildyn.2019.105827
18 PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings [M]. [S.l.]: Wiley, 1992: 362-495
19 中华人民共和国住房和城乡建设部.建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015: 10-19
20 中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015[S]. 北京: 中国建筑工业出版社, 2015: 16
21 APPLIED TECHNOLOGY COUNCIL. ATC-58-2 preliminary evaluation of methods for defining performance [S]. Redwood City: Applied Technology Council, 2003: 39.
22 邱法维 结构抗震实验方法进展[J]. 土木工程学报, 2004, 37 (10): 19- 27
QIU Fa-wei Developments of seismic testing methods for structures[J]. China Civil Engineering Journal, 2004, 37 (10): 19- 27
doi: 10.3321/j.issn:1000-131X.2004.10.003
23 熊进刚, 丁利, 田钦 混凝土损伤塑性模型参数计算方法及试验验证[J]. 南昌大学学报: 工科版, 2019, 41 (1): 21- 26
XIONG Jin-gang, DING Li, TIAN Qin Parameter calculation method and experimental verification for concrete damage plastic model[J]. Journal of Nanchang University: Engineering and Technology, 2019, 41 (1): 21- 26
24 方自虎, 甄翌, 李向鹏 钢筋混凝土结构的钢筋滞回模型[J]. 武汉大学学报: 工学版, 2018, 51 (7): 613- 619
FANG Zi-hu, ZHEN Yi, LI Xiang-peng Steel hysteretic model of reinforced concrete structures[J]. Engineering Journal of Wuhan University, 2018, 51 (7): 613- 619
25 HUANG L, HIKOSAKA H, KOMINE K Simulation of accordion effect in corrugated steel web with concrete flanges[J]. Computers and Structures, 2004, 82 (23): 2061- 2069
[1] 董海燕,张友鹏,李少远,董海龙. 超大伞裙腕臂复合绝缘子积污分布的风洞模拟[J]. 浙江大学学报(工学版), 2019, 53(8): 1563-1571.
[2] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[3] 张立栋, 韦庆文, 王擎. 回转干馏炉内挡板形状对二元颗粒运动混合的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1542-1550.
[4] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[5] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.
[6] 周佳锦,王奎华,龚晓南,张日红,严天龙. 静钻根植抗拔桩承载性能数值模拟[J]. 浙江大学学报(工学版), 2015, 49(11): 2135-2141.
[7] 陆金钰,唐屹,舒赣平,王恒华. 不等高开缝钢板剪力墙滞回性能分析[J]. 浙江大学学报(工学版), 2014, 48(11): 1968-1975.
[8] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.
[9] 艾青林,黄伟锋,祖顺江. 基于螺旋理论的钢带并联机器人力学特性数值分析[J]. J4, 2011, 45(9): 1650-1656.
[10] 俞亚南, 张巍, 申永刚. 大体积承台混凝土早期表面开裂控制措施[J]. J4, 2010, 44(8): 1621-1628.
[11] 项贻强, 孙筠. 深层混凝土搭板处治路桥过渡段的动力响应[J]. J4, 2010, 44(10): 1863-1869.
[12] 金南国 金贤玉 沈建 田野. 早龄期混凝土软化关系的数值分析[J]. , 2009, 43(4): 732-737.
[13] 赵羽习 金伟良. 混凝土锈胀时刻钢筋锈蚀率的数值分析方法[J]. J4, 2008, 42(6): 1080-1084.
[14] 陈建良 金涛 孟晓宏 童水光. 冰箱压缩机壳体噪声辐射数值分析[J]. J4, 2007, 41(5): 794-798.
[15] 胡桂林 樊建人 岑可法. 复杂流道质子交换膜燃料电池的三维数值分析[J]. J4, 2005, 39(7): 1019-1024.