Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1351-1360    DOI: 10.3785/j.issn.1008-973X.2021.07.014
土木工程、水利工程     
大跨越钢管塔双平臂抱杆的风致响应
黄铭枫1(),魏歆蕊1,叶何凯1,叶建云2,楼文娟1
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江送变电工程有限公司,浙江 杭州 310016
Wind-induced response of crane structure with double flat arms for long-span transmission towers
Ming-feng HUANG1(),Xin-rui WEI1,He-kai YE1,Jian-yun YE2,Wen-juan LOU1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Transmission & Transformation Corporation, Hangzhou 310016, China
 全文: PDF(5041 KB)   HTML
摘要:

基于风洞高频天平测力试验,获取抱杆结构在不同风向角和平臂姿态条件下的体型系数;建立施工全过程中典型工况下双平臂抱杆有限元模型,计算得到抱杆结构在多种施工工况和不同风向下的动力时程响应和风振系数,并与高耸结构设计规范的风振系数取值进行比较分析. 结果表明,对于抱杆杆身部分,基于时程分析的风振系数结果沿高度变化规律比规范风振系数更加复杂;对于第一道腰环拉索以上部分,即抱杆顶部悬臂部分,规范给出的风振系数较为保守,显著大于时程分析方法风振系数. 对于抗风最不利工况,抱杆顶部在0°和45°风向角下的时程风振系数分别达到3.05,2.24(45°x向)和2.28(45°y向).

关键词: 抱杆结构风洞试验有限元分析风振响应风振系数    
Abstract:

Based on the high-frequency force-balance wind tunnel test, the aerodynamic force coefficients of the crane structure were obtained under different wind direction angles and positions of double flat arms. Several finite element models of crane structure with double flat arms were established corresponding to typical working conditions of crane structure during the whole construction process. Wind-induced dynamic response analysis was carried out in time domain and the gust response factors of the crane structure were calculated under various working conditions and different wind directions. The calculated gust response factors were compared with the values derived from the design code of high-rise structures. Results show that the calculated gust response factors based on time history analysis for the body of crane structure exhibit more complicated behavior along the height than ones from the design code. Compared to the time history analysis, the design code overestimates the gust response factors for the top cantilever part of the crane structure, which is above the first guylines. Considering the most critical wind conditions, the gust response factor is calculated as 3.05 under 0 degree wind while the gust response factors of 2.24 (x-direction) and 2.28 (y-direction) are obtained for two orthogonal directions under 45 degree wind.

Key words: crane structure    wind tunnel test    finite element analysis    wind-induced dynamic response    gust response factor
收稿日期: 2020-05-16 出版日期: 2021-07-05
CLC:  TU 311  
基金资助: 国家自然科学基金资助项目(51838012);浙江省基础公益研究计划资助项目(LGG18E080001)
作者简介: 黄铭枫(1976—),男,教授,从事结构风工程研究. orcid.org/0000-0002-3741-7550. E-mail: mfhuang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄铭枫
魏歆蕊
叶何凯
叶建云
楼文娟

引用本文:

黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.

Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.014        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1351

图 1  输电塔和双平臂抱杆施工现场
图 2  双平臂抱杆风洞试验模型
图 3  风洞试验风向角和平臂姿态
平臂姿态 $\theta $/(°)
0°、15°、30°、45°、60°、75°、90°;
22.5° 22.5°、37.5°、52.5°、67.5°、82.5°、97.5°、112.5°;
45° 45°、60°、75°、90°、105°、120°、135°
表 1  风洞试验风向角
图 4  抱杆标准节合力体型系数
$\theta $/(°) μ s 误差/%
风洞试验 文献[18]
0 2.41 2.31 ?4.15
45 2.80 2.81 0.36
90 2.16 2.31 6.94
表 2  抱杆标准节整体体型系数对比
平臂姿态 $\theta $/(°) Cx 误差/% Cy 误差/%
文献[18] 风洞试验 文献[18] 风洞试验
0 2.23 2.26 ?1.33 0 ?0.03
45.0 1.71 1.89 ?9.52 1.56 1.68 ?7.14
90.0 0 0.23 1.90 1.72 10.47
22.5° 22.5 2.07 2.13 ?2.82 0.92 1.04 ?11.54
22.5° 67.5 0.93 1.02 ?8.82 1.83 2.26 ?19.03
22.5° 112.5 ?0.79 ?0.53 49.06 1.76 1.81 2.76
45° 45.0 1.79 1.58 13.29 1.79 1.90 ?5.79
45° 90.0 0.11 0.17 ?35.29 2.02 2.24 ?9.82
45° 135.0 ?1.55 ?1.14 35.96 1.55 1.41 9.93
表 3  双平臂抱杆结构整体风力系数对比
图 5  抱杆施工全过程典型工况示意图
图 6  抱杆结构风荷载加载点示意图
图 7  0°风向角下抱杆顶部标准节风荷载时程
图 8  0°风向角下抱杆平臂及以上结构风荷载时程
图 9  双平臂抱杆带腰环拉索有限元模型
图 10  双平臂抱杆4个工况下的自振频率
图 11  双平臂抱杆工况4的前3阶振型示意图
图 12  45°风向角4种工况下抱杆关键部位位移
Z/m β1 β2
45°x 45°y 45°x 45°y
364.7 1.41 1.36 1.32 1.37 1.01 1.02
370.8 1.51 1.46 1.47 1.21 1.06 1.02
376.9 1.74 1.60 1.60 1.71 1.13 1.14
383 2.20 1.82 1.80 2.02 1.37 1.34
389 2.42 2.03 2.00 2.29 1.61 1.69
396.2 2.62 2.23 2.26 2.62 1.81 1.82
403.4 2.85 2.35 2.36 2.84 2.15 2.01
410.5 2.92 2.46 2.50 2.89 2.18 2.05
417.8 2.99 2.51 2.52 2.92 2.18 2.11
424.8 3.08 2.56 2.60 2.95 2.20 2.21
432.2 3.17 2.62 2.67 3.05 2.24 2.28
表 4  双平臂抱杆结构工况4风振系数对比
图 13  4种施工工况在0°风向角下抱杆风振系数对比
图 14  4种施工工况在45°风向角下抱杆风振系数对比
1 周焕林, 叶建云, 罗义华 舟山大跨越高塔抱杆现场试验[J]. 电力建设, 2009, 30 (8): 63- 65
ZHOU Huan-lin, YE Jian-yun, Luo Yi-hua Site test of holding poles used in Zhoushan large high crossing tower[J]. Electric Power Construction, 2009, 30 (8): 63- 65
doi: 10.3969/j.issn.1000-7229.2009.08.016
2 潘峰, 童建国, 盛晓红, 等 1 000 kV大型薄壁钢管变电构架风致振动响应研究[J]. 工程力学, 2009, 26 (10): 203- 210
PAN Feng, TONG Jian-guo, SHENG Xiao-hong, et al Wind-induced dynamic response of large thin-walled steel tube frame for 1 000 kV substation[J]. Engineering Mechanics, 2009, 26 (10): 203- 210
3 马晋, 王子通, 周岱, 等 典型塔式起重机塔架结构风致动力响应与疲劳分析[J]. 上海交通大学学报, 2014, 48 (6): 804- 808
MA Jin, WANG Zi-tong, ZHOU Dai, et al Analysis of Wind-Induced vibration and fatigue effects of a typical tower crane[J]. Journal of Shanghai Jiaotong University, 2014, 48 (6): 804- 808
4 高松, 杨文刚, 朱伯文 特高压单柱拉线塔风振系数研究[J]. 建筑结构, 2016, 46 (Suppl. 2): 426- 430
GAO Song, YANG Wen-gang, Zhu Bo-wen Analysis on wind-induced vibration coefficient of UHV single-mast guyed tower[J]. Building Structure, 2016, 46 (Suppl. 2): 426- 430
5 邓洪洲, 徐海江, 马星 桅杆结构风振系数研究[J]. 振动与冲击, 2016, 35 (22): 48- 53
DENG Hong-zhou, XU Hai-jiang, MA Xing Wind-vibration coefficient of guyed masts[J]. Journal of Vibration and Shock, 2016, 35 (22): 48- 53
6 邓洪洲, 张利, 庞金来 桅杆结构风振系数计算方法研究[J]. 特种结构, 2017, 34 (2): 1- 7
DENG Hong-zhou, ZHANG Li, PANG Jin-lai Study on the calculation method for wind vibration coefficient of guyed masts[J]. Special Structures, 2017, 34 (2): 1- 7
7 赵爽, 晏致涛, 李正良, 等 基于风洞试验的苏通大跨越输电塔风振系数研究[J]. 建筑结构学报, 2019, 40 (11): 35- 44
ZHAO Shuang, YAN Zhi-tao, LI Zheng-liang, et al Investigation on wind-induced vibration coefficients of Sutong long span transmission tower based on wind tunnel tests[J]. Journal of Building Structures, 2019, 40 (11): 35- 44
8 史国富, 屠海明 一体化通信基站风振响应及风振计算研究[J]. 特种结构, 2020, 37 (2): 108- 112
SHI Guo-fu, TU Hai-ming Calculation and analysis on wind-induced vibration response of integrated communication base station[J]. Special Structures, 2020, 37 (2): 108- 112
9 柯世堂, 王晓海, 徐璐. 高三管集束式钢烟囱风致响应与风振系数研究[J/OL]. 建筑结构学报(2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769.
KE Shi-tang, WANG Xiao-hui, XU Lu. Study on wind-induced response and wind vibration coefficient of a high three-tube cluster steel chimney [J/OL]. Journal of Building Structures (2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769.
10 杨文刚, 王璋奇, 朱伯文, 等 特高压单柱拉线塔塔线体系风振响应时程分析[J]. 中国电机工程学报, 2015, 35 (12): 3182- 3191
YANG Wen-gang, WANG Zhang-qi, ZHU Bo-wen, et al Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system[J]. Proceedings of the CSEE, 2015, 35 (12): 3182- 3191
11 GANI F G, LÉGERON F L Dynamic response of transmission lines guyed towers under wind loading[J]. Canadian Journal of Civil Engineering, 2010, 37 (3): 450- 465
doi: 10.1139/L09-160
12 HAMADA A, DAMATTY A Behavior of guyed transmission line structures under tornado wind loading[J]. Computers and Structures, 2011, 89 (11-12): 986- 1003
doi: 10.1016/j.compstruc.2011.01.015
13 HAMADA A, EI DAMATTY A A Failure analysis of guyed transmission lines during F2 tornado event[J]. Engineering Structures, 2015, 85: 11- 25
doi: 10.1016/j.engstruct.2014.11.045
14 HAMADA A, KING J P C, EI DAMATTY A A, et al The response of a guyed transmission line system to boundary layer wind[J]. Engineering Structures, 2017, 139: 135- 152
doi: 10.1016/j.engstruct.2017.01.047
15 LADUBEC C, DAMATTY A E, ANSARY A E Effect of geometric nonlinear behavior of a guyed transmission tower under downburst loading[J]. Applied Mechanics and Materials, 2012, 226-228: 1240- 1249
doi: 10.4028/www.scientific.net/AMM.226-228.1240
16 LORENZO I F, ELENA B C, PM RODRÍGUEZ, et al Dynamic analysis of self-supported tower under hurricane wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104078
doi: 10.1016/j.jweia.2019.104078
17 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
18 高耸结构设计标准: GB 50135—2019[S]. 北京: 中国计划出版社, 2019.
19 HUANG M F, LOU W, YANG L, et al Experimental and computational simulation for wind effects on the Zhoushan transmission towers[J]. Structure and Infrastructure Engineering, 2012, 8 (8): 781- 799
doi: 10.1080/15732479.2010.497540
20 肖正直, 李正良, 汪之松, 等 基于HFFB试验的特高压输电塔风振响应分析[J]. 工程力学, 2010, 27 (4): 218- 225
XIAO Zheng-zhi, LI Zheng-liang, WANG Zhi-song, et al Wind-induced vibration analysis of UHV transmission tower based on the HFFB tests[J]. Engineering Mechanics, 2010, 27 (4): 218- 225
21 冯鹤, 黄铭枫, 李强, 等 大跨干煤棚网壳风振时程分析和等效静风荷载研究[J]. 振动与冲击, 2016, 35 (1): 164- 172
FENG He, HUANG Ming-feng, LI Qiang, et al Wind-induced vibration time history analysis and equivalent static wind loads for long-span lattice shells[J]. Journal of Vibration and Shock, 2016, 35 (1): 164- 172
[1] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[2] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[3] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[4] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.
[5] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[6] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[7] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[8] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[9] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[10] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[11] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[12] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[13] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[14] 黄铭枫,叶何凯,楼文娟,孙轩涛,叶建云. 考虑风速风向分布的干煤棚结构风振疲劳分析[J]. 浙江大学学报(工学版), 2019, 53(10): 1916-1926.
[15] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.